¿Cómo se forman los rayos?

Todos hemos sido testigos de alguna descarga eléctrica de millones de voltios azotando la tierra. Algunos incluso hemos sido lo suficientemente afortunados para verlas prender fuego a cosas. Pero, si ya cuesta un rato cargar una interna manual que funciona con una cantidad ridícula de electricidad, ¿De dónde sale toda esa corriente que cae del cielo?
La ciencia que estudia los rayos se llama fulminología, que a nuestro parecer ostenta el récord al mejor nombre para una disciplina científica.
Para entender por qué se producen los rayos, veamos primero cómo funciona una corriente de agua.
¿Pero qué esta basura? ¿Me estás tomando el pelo?

No, aún no. La electricidad se comporta de manera parecida a un sistema fluvial. 

Por un lado, tenemos una reserva de agua que, por el mero hecho de estar por encima del nivel del mar, acumula un tipo de energía llamada energía potencial. Todo lo que se encuentra a cierta altura tiene energía potencial, ya sea una masa de agua o una persona en la terraza de un segundo piso, pero ésta no se manifestará hasta que se abra una vía de escape por donde disiparla: saltando por el balcón, en el caso de la terraza, o abriendo un agujero por dónde pueda salir el agua, en el caso de un lago. Será entonces cuando el sistema evolucione hasta alcanzar un estado de equilibrio.
“Estoy muy contento de haber 
quedado en equilibrio con la acera”
De la misma manera, para que fluya electricidad por un sistema necesitamos un bloque de un material que tenga muchísimos electrones y otro al que le falten. Los electrones tienden siempre a colocarse en el estado en el que menos energía ocupen, es decir, allá donde haya un hueco vacío donde meterse. Si tenemos dos materiales, uno al que le sobran electrones y otro al que le faltan, se dice entonces que, entre los dos materiales, hay cierto potencial eléctrico.
Pero, igual que la energía potencial no puede manifestarse hasta que le abrimos una vía de escape, este potencial eléctrico no tendrá ningún efecto hasta que unamos los dos bloques con un material por el que los electrones sean capaces de desplazarse con más o menos facilidad. Una vez unidos, éstos sacarán su lado humano y automáticamente huirán del bloque donde están todos aglomerados, buscando espacio libre para escapar de la multitud.
Los electrones son como nosotros en este aspecto y, cuando todo el mundo está cómodo en su sitio, nadie quiere volver a moverse. O sea, que lo que conocemos como corriente eléctrica no son más que carreras de electrones a través de un material conductor y, cuando los electrones dejan de pasar por el cable, se nos acaba el chollo.
En el siguiente dibujo, vemos lo que pasa en realidad cuando se nos acababan las pilas de la Game Boy: realmente no se “acaba” nada, sólo que las pilas han llegado al equilibrio.

¿Entonces qué tenía que ver todo esto con el ejemplo del puñetero río`?
Al hablar de electricidad, es inevitable que todos hayamos escuchado los términos voltaje, intensidad o resistencia. Si os pasa como a nosotros, los encontraréis conceptos difíciles de visualizar porque no tenemos ninguna referencia física para imaginarlos.
El siguiente ejemplo, ayuda bastante.
Al fin y al cabo, una corriente eléctrica y una de agua tienen el mismo fundamento: son un montón de partículas fluyendo por un tubo. En realidad, en el caso del agua son moléculas y en el de la electricidad, electrones, pero ambas siguen siendo puntos microscópicos en movimiento que no podemos ver a simple vista. 
Explicamos cada parte del dibujo.
1. Un flujo de agua circula por un tubo. Está claro que, cuanto más ancho sea el tubo, más agua podrá pasar al mismo tiempo. De la misma manera, la intensidad es la magnitud eléctrica que determina la cantidad de electrones que están pasando por la sección de un cable o, lo que es lo mismo, el equivalente al caudal de un río.
2. Luego está la llamada altura de columna, que viene a expresar la fuerza con la que el chorro de agua está siendo a empujado. Suponiendo un tubo situado en la base de un depósito, hay que tener en cuenta que toda la masa de agua que esté por encima del tubo estará presionando hacia abajo por efecto de la gravedad. Cuanto más alto sea el depósito, más masa habrá por encima de la salida empujando hacia abajo, por lo que el chorro de agua saldrá a más velocidad. Esto, cambiando moléculas de agua por electrones, sería el equivalente al voltaje.
3. La resistencia no es una propiedad propia de la corriente eléctrica, si no del material por el que está circulando. Básicamente, define la facilidad con la que pueden desplazarse los electrones por su interior. El cobre, por ejemplo, es muy buen conductor de la electricidad, por lo que ofrece poca resistencia al paso de corriente eléctrica. En términos hidráulicos, esto equivaldría a la rugosidad del tubo por el que pasa el agua: a más rugosidad, más energía perderá el flujo de agua al chocar contra las imperfecciones que cubren las superficie interior del tubo y más le costará desplazarse.
TOTAL.
Ahora que ya tenemos las bases necesarias, volvamos a los rayos. 
Cuando muchas nubes se acumulan en una zona, las partículas de agua que las componen, en conjunto, tienden a adoptar una carga negativa. No se sabe con certeza a qué se debe esto, unos dicen que por la polarización de pequeños cristales de hielo por efecto del campo magnético terrestre, otros argumentan que tiene que ver con la formación de aguanieve de densidades dispares en las diferentes capas de la nube. Para el caso que nos ocupa, a nosotros nos va a dar completamente igual.
La cuestión es que las nubes empiezan a cargarse negativamente (pierden electrones). Por suerte o por desgracia, el suelo tiene carga positiva. No estamos seguros de por qué, y no hemos conseguido encontrar una explicación por internet, pero probablemente tiene que ver con que el suelo está lleno de metales, a los que suelen sobrarles electrones por todos lados.
Llegados a este punto, lo único que separa a los electrones de su felicidad es todo el aire que hay entre  las nubes y el suelo
Pero el aire es un pésimo conductor de la electricidad… ¿No?
Que una cosa sea mala conductora de la electricidad no quiere decir que no conduzca la electricidad en absoluto. Sólo significa que una corriente que pretenda atravesarla tendrá que tener una tensión y una intensidad tremendas para compensar toda la energía que perderá durante el camino.
O sea que, hasta que la nube está muy cargada negativamente (le faltan muchísimos electrones), los electrones del suelo no acumulan la rabia suficiente para correr a rellenar todo ese montón de huecos en los que alojarse, formando lo que llamamos un rayo.  
El flujo eléctrico resultante suele tener un voltaje de 10 a 120 millones de voltios y una intensidad unos 30.000 amperios. En comparación, 10 miliamperios (0.0001 amperios)  pueden ser suficientes para detener un corazón humano. El voltaje no influye tanto a la hora de matar a una persona ya que, al fin y al cabo, esta magnitud tan sólo determina la velocidad con la que la corriente eléctrica se desplaza por el cuerpo. Lo realmente peligroso es la cantidad de electrones que nos atraviesan
Demasiados párrafos sin contenido visual. Procedo a incluir un poco para hacerlo más interesante.
Justo en el momento anterior a que los electrones empiecen a ascender del suelo hacia la nube, el aire se ioniza. Esto quiere decir que las moléculas de gas se separan en iones positivos y electrones, de manera que estos electrones libres ahora pueden moverse como les dé la gana y son capaces de abrir un “camino” desde la nube hasta el suelo. En el principio de este vídeo puede observarse que es un fenómeno más complejo de lo que podría parecer a primera vista.

El primer “tentáculo” en llegar al suelo marca el camino
que seguirá el rayo.

Lo curioso, en este caso, es que el aire empieza a ionizarse en todas direcciones, ramificándose en pequeños destellos que van abriéndose camino por donde les sale de las narices, buscando la carga positiva más cercana. Cuando una de estas ramas alcanza una carga positiva (en este caso, el suelo), conecta la nube con el suelo mediante la autopista eléctrica, y es entonces cuando todos los electrones encuentran vía libre para ascender a sus ansiados huecos libres en el cielo a unos 440.000 m/s.
Y, al fin, hemos entendido cómo funciona, más o menos, un rayo.
¡Eh, sinvergüenza, aquí no has dicho de dónde vienen los truenos que acompañan a los rayos!

Tienes razón. Por suerte, es rápido de explicar.

Como hemos dicho, el aire es muy mal conductor de la electricidad. Eso significa que cualquier corriente eléctrica que intente atravesar una masa de aire va a perder muchísima energía por el camino, y esta energía se disipará en forma de calor.
La potentísima corriente eléctrica de un rayo genera tanto calor a medida que atraviesan el aire, que éste se calienta muchísimo en un espacio muy corto de tiempo. Hablamos de temperaturas que pueden alcanzar los 28.000ºC, casi cinco veces la temperatura de la superficie del sol. Al calentarse, el aire tiende a expandirse por lo que, por la regla de tres, al calentarse a 28.000 grados, se expandirá a velocidades inimaginables. 
Esa expansión repentina del aire es que llega a nuestros oídos y nuestro cerebro interpreta como un sonido atronador
Vale, GRACIAS.

Y, a todo esto, caen como 50 rayos por segundo en la superficie de la tierra. Que cayera uno en el Vaticano el otro día tras la dimisión del Papa, no es más que una curiosidad estadística. Así que BASTA YA.

6 pensamientos en “¿Cómo se forman los rayos?”

  1. “La cuestión es que las nubes empiezan a cargarse negativamente (pierden electrones). “

    Esto es una pifia ¿No? Los electrones tienen carga negativa, por lo que las nubes al cargarse negativamente ganarían electrones. Habría que darle la vuelta al artículo.

  2. Justamente pensé lo mismo sobre las cargas de la nube y el suelo. Ganar electrones es cargarse negativamente, y perderlos es pues lo contrario, cargarse positivamente. En este caso los electrones de las nubes descenderían al suelo buscando esos “Huecos positivos”.

  3. la explicación de porqeu las nubes se cargán electricamente, la explica muy bién en un documental de rayos de national geographic de rayos, que llevo buscando mucho tiempo y no encuentro.
    No meacuerdo mucho, pero la razón de la carga de las nubes es debido a las capas superiores de la atmosfera, y estas a la radiación solar sii no recuerdo mal,

  4. Hola Jordi, quisiera decir algo, en la entrada mencionas que “La cuestión es que las nubes empiezan a cargarse negativamente (pierden electrones)“.
    Esto me parece que esta mal pues si las nubes pierden electrones deberían cargarse positivamente, creí entonces que se trataba de un error cuando mencionaste que la nube era el polo negativo y el suelo el polo positivo, de esta manera si tendría sentido que la carga ascendiera (“y es entonces cuando todos los electrones encuentran vía libre para ascender”) del suelo hacia la nube. Sin embargo si la descarga “ascendía” me pregunté ¿por qué el rayo salía de la nube al suelo? así que busqué un poco por Internet y parece ser que no te equivocas en la orientación de los polos, entonces he quedado un poco confundido y quisiera que aclararas un poco mis dudas por favor.

    Aprovecho para decir que es grandioso que hayas iniciado este proyecto y se siente bien ser parte de él, sigue así y éxitos en la vida (espero comprar uno de tus libros en el futuro, soy de Colombia y en mi moneda sale un pelín más costoso).

Deja un comentario