Especial Física (I)

Después de los especiales sobre química I y II, toca cambiar de campo. Los más tiquismiquis (los fisicos) argumentarán que desde el principio he titulado mal las entradas, porque la química no es más que física a nivel subatómico, pero me da igual porque su disciplina es matemáticas aplicadas.
Así que, LETS GO.
En primer lugar, ¿qué pasa cuando dejamos caer un muelle completamente estirado desde una altura cualquiera? El siguiente gif nos lo muestra, pasándolo a cámara lenta para verlo mejor.
Fuente: 1veritasium.
A efectos prácticos, podríamos decir que esto es magia y olvidarnos del tema.
Pero estamos aquí para explicar las cosas, y eso es una putada.

Todo muelle tiene una constante elástica, que no es más que la “fuerza” con la que es capaz de contraerse una vez estirado. Para hacernos una idea de esta constante, si sujetamos el muelle en el aire, éste se alargará más o menos por su propio peso, dependiendo de la capacidad que tenga de recuperar su forma inicial. Un muelle muy fuerte, como el de la suspensión de un coche, ni siquiera se alargará por su propio peso.
En el caso del gif, en el que usan uno de esos juguetes que bajaban por la escalera, el muelle se alarga hasta una posición de equilibrio, y es ahí donde empieza el percal.

Muelle sujeto por un sistema de hilos, porque dibujar 
una mano en una posición compleja con el Paint es exasperante.

En el estado 1, la vida es perfecta. Estamos aguantando el muelle y el peso, transmitido hasta la base, está compensado por la fuerza elástica que tira de la masa hacia arriba.
Pero, al soltar el muelle, en el estado 2, el extremo que teníamos sujeto se vuelve loco porque, de repente, ya no hay una mano que compense la tensión que estaba experimentando. Sin manera de contrarrestar esta fuerza hacia abajo, el extremo superior del muelle empieza a caer.
A la base del muelle todo esto se la trae floja (estado 3). Sigue notando una tensión que le tira de arriba, igual al peso que la intenta arrastrar hacia abajo, así que ni se inmuta. 
Cuando, al fin, en el estado 4, el extremo que está comprimiéndose alcanza la base, todo el tinglado se viene abajo. Pero no cae a causa del impacto o por la velocidad que ha alcanzado la sección contraída, si no porque, una vez comprimido, el muelle ya no es capaz de ejercer fuerza. Como no hay ninguna tensión vertical hacia arriba que compense el peso, la gravedad toma el control de todo el sistema y lo arrastra hacia abajo.
OTRO.
En el siguiente gif podemos ver una bala desmenuzándose contra un muro de hormigón, casi comportándose como un líquido más que como un sólido. La imagen está grabada a 1.000.000 de fotogramas por segundo.

Crédito: Werner Mehl. www.kurzzeit.com

Lo primero en lo que deberíamos fijarnos es cómo la bala va rotando sobre su eje a medida que se acerca al muro. Los cañones de las armas de fuego tienen unos pequeños surcos en su interior que fuerzan la rotación de la bala, porque eso le da mucha más estabilidad a la trayectoria.

Pero eso ya lo sabías gracias a las películas de 
James Bond, ¿O no? Sí, representa la perspectiva desde
el interior de un cañón.

Y, luego, lo obvio, que una bala a altas velocidades se comporta como un trozo de mantequilla al chocar contra algo más duro que ella.
Tampoco es algo muy difícil, teniendo en cuenta lo blando que es el material del que están hechas, el plomo, en comparación con otros metales. 
Los materiales duros, al impactar contra alguna cosa o romperse, tienden a resquebrajarse por las zonas más débiles y separarse en trozos mayores que salen o no volando, dependiendo de la fuerza aplicada, y ahí termina la historia. 
Un material tan blando como el plomo se comporta más como plastelina: en vez de fragmentarse, se deforma indefinidamente hasta que queda irreconocible.
El curioso que, pese a que la bala se “pela” hacia afuera a medida que choca contra la pared de hormigón, la parte trasera impacta sin apenas deformarse. Esto pasa por tres cosas:
1- La deformación del resto de la bala ha absorbido parte de la energía del impacto, por lo que no pega tan fuerte.
2- Mientras que la punta impacta directamente contra el muro, la parte trasera golpea los restos que aún no se han apartado de la trayectoria, más blandos, de la bala que sigue desintegrándose.

3- La superficie de contacto de la parte posterior es mayor, con lo que la fuerza del impacto se distribuye.

Y, nada, ya vamos por el último.

Haciendo pasar corriente eléctrica altera a través de una bobina de cobre, podemos generar un campo magnético. Y es entonces cuando podemos meter algún trozo de metal para ver cosas interesantes, como esta.

El efecto producido por la bobina es similar al de los imanes: el campo magnético generado alinea y retiene los átomos del metal en una dirección, más o menos siguiendo el patrón que muestra esta figura.

Fuente: hamradioschool.com
Al colocar en medio el cilindro metálico, el campo magnético actúa como una especie de flujo ascendente que empuja todas las partículas del objeto hacia arriba, contrarrestando el efecto de la gravedad, que tira hacia abajo.
Ya, pero si para levitar tengo que prenderme fuego, creo que paso.

Un objeto no tiene por qué calentarse al meterlo en un campo magnético. De hecho, la Tierra está generando un campo magnético a tu alrededor y tu pelo no está en llamas. También es verdad que el campo magnético terrestre es relativamente débil.
De todas maneras, lo que ocurre aquí es que los campos magnéticos, además de tener la capacidad de  calentar cosas, también pueden generar electricidad en el interior del objeto que está sometido a ellos
Los electrones de los átomos que componen el material empezarán a moverse, intentando seguir la dirección del campo magnético. Como vimos en la entrada sobre rayos, “electrones moviéndose” es un sinónimo de “corriente eléctrica”, y las corrientes eléctricas tienden a generar mucho calor a medida que pierden energía al moverse a través de un material que no sea muy buen conductor de la electricidad. 
Sometido a un campo magnético suficientemente potente, como el del gif, los electrones del metal se mueven de manera suficientemente caótica y rápida como para generar una fuerte corriente eléctrica, que a su vez calienta muchísimo el material. Además, el material caliente es aún peor conductor de la electricidad, por lo que se genera incluso una mayor cantidad de calor hasta que al señor al cargo del experimento le da por apagar el aparato y, sin nada que lo sostenga en el aire, el cilindro cae y se chafa contra la mesa, enfriándose rápidamente en forma de diarrea metálica.
Y esto es todo por hoy.
Por cierto, después de que algunos visitantes regulares de la página me comentaran que no podían dejar comentarios en las entradas sin hacerse una cuenta de Blogger, he trasteado con la configuración y ahora todo el mundo puede comentar anónimamente. Así que, venga, todo el mundo a decir barbaridades desde la sombras.

11 pensamientos en “Especial Física (I)”

Deja un comentario