Respuestas XX: ¿Cuántas anguilas eléctricas hacen falta para iluminar una ciudad?

Heduart Punseto, el célebre doble de Eduard Punset que reside en Youtube, me ha mandado una pregunta… ¡En vídeo!

Para los que leéis Ciencia de Sofá desde el móvil: http://www.youtube.com/watch?v=uS736YX9CvQ

¿Podría aprovecharse la electricidad generada por las anguilas eléctricas para abastecer de energía una ciudad pequeña como… Barcelona? ¿Cómo debería ser el tanque que las contuviera?

Vamos a ello.

El consumo eléctrico de Barcelona en 1999 fue de 50.78 PJ, donde PJ son Petajoules. Un Joule es una medida del trabajo que realiza alguna cosa o la energía que desprende. Para hacernos una idea, 1 gramo de TNT equivale, en términos energéticos, a 4184 J.

Para abastecer la demanda energética de Barcelona necesitamos 50.78 PJ al año, lo que son 50.780.000.000.000.000 J anuales.

Para convertirlo en una unidad más manejable, suponemos que la demanda anual de la ciudad es uniforme en todo momento (se consume la misma electricidad durante todo el día), con lo que cada segundo necesitaremos 1.610.223.237 J para cubrirla.

Ya tenemos medio puzzle montado, así que calculamos la potencia que es capaz de desarrollar una anguila. Como ya mencionaba la entrada anterior, las anguilas son capaces de producir corrientes de 700 Voltios y hasta 1 Amperio, pero de una duración de sólo 2 milisegundos. Cada descarga de una anguila produce, entonces, 1.3 Joules.

Ahora es fácil calcular que para cubrir la demanda energética de Barcelona en un momento dado, necesitaremos 1.238.633.259 de descargas eléctricas de anguila por segundo. Esto son casi mil doscientos cuarenta millones de anguilas dando una descarga al unísono en un momento dado.

Suponiendo que las anguilas fueran de usar y tirar, esto equivaldría a utilizar, anualmente, 39.060.000.000.000.000 anguilas (39 mil billones de anguilas).

“Pero… Pero… ¿Es necesario…?”. Crédito, aquí.

Tienes razón, anguila triste, eso es un gasto de dinero y hacemos pasar un mal trago a tu especie, así que desarrollemos un sistema para rebajar esta cifra.

Una anguila suele dar de tres a cinco descargas seguidas antes de tener que parar para descansar. Es decir, que podríamos exprimir a las anguilas al máximo provocando cinco descargas en cada una de ellas, en un espacio de cinco segundos. Esto está muy bien porque el número de anguilas necesarias anualmente se reduciría a un quinto del calculado.

Pero poder utilizar cada anguila durante cinco segundos nos da una ventaja extra.

Originalmente, hemos pensado que el dispositivo que aprovecharía la energía de las anguilas podría ser un tubo muy largo a través del cual se bombearían las anguilas en fila y, en una sección determinada del tubo, se las asustaría para que dieran una descarga.

Pero habría un problema: con una longitud media de 2 metros por anguila, la sección del tubo destinada a recolectar la electricidad producida por los animales tendría que medir alrededor de 2.477.266,5 kilómetros y cada segundo tendría que ser renovado con nuevas anguilas. Considerando que estamos sugiriendo que cada segundo una anguila cualquiera tendría que desplazarse dos millones y medio de kilómetros para dejar el tubo libre, y que la velocidad de la luz es ocho veces inferior a esa cifra, tenemos que descartar la idea.

La segunda opción que se nos ha ocurrido es la siguiente:

Las 1.238.633.259 anguilas que se necesitan en cualquier segundo dado para abastecer la ciudad de Barcelona cabrían en una esfera de 183.81 metros de radio (hemos aproximado el volumen de cada angula considerándola un cilindro de 5.7 cm de radio, sabiendo su longitud y su densidad aproximada).

La idea es construir dos gigantescos depósitos esféricos y bombear en el interior de uno de ellos (llamémoslo depósito 1) 1.240 millones de anguilas que permanecerán en su interior durante 5 segundos, proporcionando una descarga cada segundo. Durante esos 5 segundos, el depósito 2 se llenaría de anguilas y, cuando en el depósito 1 ya estuvieran todas cansadas, las del depósito 2 empezarían a descargar. Mientras tanto, el depósito 1 se vaciaría y volvería a llenar de anguilas, para empezar el ciclo de nuevo cuando las del depósito 2 se cansaran.

Las anguilas usadas serían bombeadas a un tanque para descansar y recargar las pilas.

No ha habido manera de encontrar una fuente fiable que nos diga cuánto tarda una anguila en recuperar su capacidad para dar descargas (el hecho de que exista un grupo de música llamado Electric Eel Shock no ayuda nada). La única cifra que hemos encontrado es de 20 minutos, aunque está proporcionado por Yahoo Respuestas por un usuario que cita una fuente en la que no aparece lo que dice.

De todas maneras, tomando esta referencia podemos reducir en gran parte el número total de anguilas necesarias para abastecer el suministro energético barcelonés ya que, dados ciclos de 5 segundos para cada anguila, las anguilas estarán funcionales de nuevo 240 ciclos después de salir del generador. Esto significa que podríamos alternar 241 “packs” de anguilas y hacerlas pasar continuamente por el sistema cada vez que recuperan fuerzas. Aumentando el número de “packs” de anguilas a 250, para darles un respiro extra y que puedan comer algo, entonces “sólo” necesitaríamos 309.658.314.750 (309.65 mil millones) anguilas eléctricas (que se irían turnando) para cubrir la demanda energética de la ciudad, frente a los 39 mil billones iniciales.

¿Mejor así?

“Bueno, seguirán muriendo millones de compañe…”

¡ESTUPENDO!

Eso sí, esta solución alteraría un poco el skyline de la ciudad.

11 pensamientos en “Respuestas XX: ¿Cuántas anguilas eléctricas hacen falta para iluminar una ciudad?”

  1. Y no se pueden usar 100 paquetes de 12.400.000 tubos en paralelo, con las anguilas circulando con una diferencia de 0.01 segundos de un paquete a otro, con los paquetes en direcciones opuestas (lo digo para consegir corriente alterna de 50 Hz 🙂 ) así las anguilas no tendrían que nadar tan rápido (solo 2m/s)

  2. De todas formas, se lo pasaré a un compañero que ha fabricado un controlador para una pecera de gambas… lo llama GAMBATRÓN 🙂 a ver que se le ocurre 😀

Deja un comentario