Archivo de la categoría: Astrofísica

¿Qué es el letargo solar?

Ya ha salido una nueva noticia alarmista, y esta vez de la mano de Actualidad RT, un portal de noticias que tiene ganas de que estalle la Tercera Guerra Mundial en cualquier momento. Como de aquí a los batallones de páginas pseudocientíficas sólo hay un paso (lo siento, RT, pero es el precio que tiene decirles lo que quieren oír), he preferido adelantarme antes de que se me inunde la bandeja de entrada con preguntas sobre el tema. El titular que me ha llamado la atención es:

Primero os dejo un breve resumen de la situación, muy bien explicada en este informe del GAME (Grupo Amateur de Meteorología Espacial):

El actual ciclo solar, el número 24, está siendo inusualmente tranquilo. La actividad solar ha disminuido un 46% respecto a otros ciclos y parece que la tendencia continuará de cara al siguiente, que además llegará con 4 años de retraso. Esto podría tener algún efecto en el clima terrestre.

Para saber qué está haciendo el sol en cualquier momento, podéis seguir al GAME en Facebook haciendo click aquí o visitar su página web.

Antes de llevarnos las manos a la cabeza, ¿A qué nos referimos con eso de actividad solar?

Seguir leyendo ¿Qué es el letargo solar?

Los restos del cometa ISON no representan ningún peligro

Hace un mes, en esta entrada, hablábamos del cometa ISON y su color verdoso relativamente poco habitual. Como viene siendo tradición, aparecieron catastrofistas afirmando que este cometa iba a impactar contra la Tierra, pero el cometa se desintegró al pasar demasiado cerca de la superficie del Sol (hubiera quedado muy bien si le hubieran llamado Ícaro desde el principio) antes de volver hacia el lugar de donde había venido (los confines del sistema solar), como puede verse en esta imagen:

Crédito: ESA/NASA/SOHO/SDO/GSFC.

 

En la imagen aparecen las diferentes fases del cometa después de pasar por detrás del sol. Como se puede observar, después de rodearlo, su brillo va disminuyendo y su cola reduciéndose hasta desaparecer, señal de su desintegración.
Al dejar de brillar, el estudio directo de los pedazos en los que el cometa inicial (de unos 5 kilómetros de diámetro) se dividió resulta un poco complicado y, cómo no, los conspiranoicos han vuelto a frotarse las manos de nuevo al ver que podían inventarse otra mandanga con las que mantener las visitas de sus páginas web.

Seguir leyendo Los restos del cometa ISON no representan ningún peligro

¿Qué son las supernovas?

Cuando uno escucha la palabra supernova le viene a la cabeza el concepto explosión loca en el espacio* pero, técnicamente, no es el caso. Una supernova es la culminación apoteósica de la vida de una estrella con una masa enorme, del orden de entre 8 y 250 veces la de nuestro sol.


Comparación del Sol y la estrella R136a1, 265 veces más masiva. Los colores nos los hemos inventado, sólo estamos mostrando la escala.

 

Aclararemos que, de por sí, una estrella ya es una explosión termonuclear de proporciones inimaginables en la que interviene tanta materia que su propia atracción gravitatoria la mantiene confinada en una esfera. O sea, que una supernova no puede ser la explosión de una explosión.

Así que hablemos de la vida de las estrellas.

Mientras le dura el combustible, la reacción de fusión nuclear en el centro de una estrella trata de empujar su masa hacia afuera, a la vez que la propia materia que compone el astro intenta comprimir el núcleo en dirección contraria. De esta manera, las estrellas se mantienen en equilibrio.

Pero, a medida que el combustible se agota, la explosión central va perdiendo fuerza y la masa que rodea el núcleo empieza a comprimir el núcleo estelar, ya que sigue empujando con la misma fuerza desde todas direcciones.

Cuando la estrella agota todo su combustible (para los que tienen idea del asunto, ha fusionado los elementos ligeros en elementos mucho más pesados “infusionables”, como el hierro), la explosión central se detiene repentinamente y la masa que la rodea libera todo su potencial compresivo contra el núcleo, porque ya no hay ninguna fuerza que la expulse hacia afuera.

Este proceso es muy violento.

¿Recordáis la entrada en la que  hablábamos de cómo en realidad los átomos estaban compuestos casi en su totalidad por espacio vacío (click aquí para leerla)? La compresión a la que queda sometida la materia en el centro de la estrella es tan grande que los átomos se descomponen y las partículas que constituyen los núcleos atómicos quedan sueltas, formando una sopa extremadamente densa de protones y neutrones.

De nuevo, no está a escala.

Este amasijo de protones y neutrones es tan denso que un dedal lleno del material pesaría 100 millones de toneladas.

Pero… ¿Cómo…? ¿Qué? :O

Los núcleos atómicos tienen una densidad del orden de 230.000.000.000.000.000 kilogramos por metro cúbico pero, como ocupan una fracción tan pequeña del átomo y el resto es espacio vacío (volvemos a mencionar esta entrada que deberíais leer), no lo notamos a nivel macroscópico. Si suprimimos todo el espacio vacío intermedio, los núcleos atómicos pueden entrar en contacto directo en grandes cantidades y es entonces cuando muestran su verdadera naturaleza.

Total, que una vez reducidos los átomos a su forma más elemental, la fuerza que es capaz de ejercer la estrella no es suficiente como para continuar con la compresión y el proceso se detiene repentinamente.

Pero, claro, toda la materia de la estrella se había precipitado hacia el núcleo en un instante, por lo que había cogido muchísimo impulso. Cuando esa masa da de lleno con el núcleo incompresible, se produce un efecto rebote de escalas cataclísmicas y todo el material sale despedido hacia el espacio a velocidades de hasta 30.000 kilómetros por segundo (un 10% de la velocidad de la luz). El proceso libera una cantidad tremenda de energía, y esto es lo que se llama una supernova.

Los restos de una supernova observados en 1572 por el astrónomo Tycho Brahe.

Lo que queda atrás son los restos extremadamente compactos del núcleo estelar, que variarán en forma según la masa original del astro: una estrella de neutrones (de unas cuantas decenas de kilómetros de radio, pero increíblemente densa) o, si la estrella es suficientemente grande como para comprimir el material más allá de la sopa de protones y neutrones, un agujero negro.

Ya habíamos hablado tanto de las estrellas de neutrones como de los agujeros negros en esta entrada y esta otra, así que damos el tema por zanjado.

Lo interesante es que otro monstruo puede emerger de todo este caos. Una de cada diez veces, durante la formación de una estrella de neutrones, algo sale mal y aparece lo que los astrónomos llaman un magnétar (del inglés, magnetic star), un cuerpo que posee campo magnético tan increíblemente potente que:

  • A 965 kilómetros de distancia, sería capaz de desgarrarte separando cada uno de los átomos que compone tu cuerpo.

O,

  • Si estuviera a medio camino entre la Tierra y la Luna, podría borrar los datos de todas las tarjetas de crédito del mundo.

Impresión artística de un magnétar (a nuestros telescopios les falta bastante para poder observarlos directamente).Crédito: apod.nasa.gov

No está muy claro aún qué determina si se formará una estrella de neutrones corriente o un magnétar pero se cree que, justo antes de colapsarse en una bola súper compacta, el material podría condensarse en un líquido extremadamente denso formado por protones, que en conjunto tendrían una gran carga eléctrica. Cuando un material cargado eléctricamente se desplaza, genera campos magnéticos (como explicábamos aquí) y, teniendo en cuenta de que estos monstruos giran sobre sí mismos alrededor de una vez por segundo, no debería extrañarnos el efecto de su magnetismo.

*Este concepto puede variar ligeramente de persona a persona.

Respuestas XXII: Materia oscura.

Volviendo a la dinámica de los lunes que se convierten en martes, respondo a una pregunta formualda por Esteban Molina que me ha gustado mucho: ¿Qué es la materia oscura?

Al hablar de materia oscura, nos referimos a algo que no interacciona con la materia ordinaria o no emite o absorbe ningún tipo de energía electromagnética (luz, infrarrojos, rayos X…), pero que sabemos que está ahí porque el comportamiento de muchas galaxias no parece cuadrar con la cantidad de masa que tienen: la fuerza de gravedad que las mantiene estables es de 5 a 10 veces mayor de la que debería. Es decir, que nos estamos pasando por alto algo bastante gordo.

En esta imagen, los halos brillantes se han añadido para señalar dónde está concentrada la materia oscura, basándose en la distorsión de la luz de las galaxias de fondo a causa de la gravedad. Fuente: hubblesite.

Bueno, ¿Y si lo único que falla realmente son las ecuaciones que estamos usando para modelar la gravedad? 
Seguir leyendo Respuestas XXII: Materia oscura.

El hexágono de Saturno

En 1980 y 81, la sonda Voyager sobrevoló el polo norte del segundo planeta más grande del sistema solar, Saturno, y se encontró con algo que fue fotografiado 32 años después por la sonda Cassini, que pasó por allí el 27 de Noviembre de 2012 y tomó la siguiente imagen:

Fotografía en espectro cercano al infrarrojo. Crédito: NASA/JPL-Caltech/Space Science Institute.

Con el 21 de Diciembre de 2012 a menos de un mes de distancia, una avalancha de difusores de pseudo-ciencia barata sacó el caso a relucir, cada uno explicando una mandanga diferente según el producto que intentaran venderte. Sabemos que no era vuestra intención, Mayas.

Menos palabrería y más explicarme qué es eso antes de que me compre un kit de supervivencia.

Ya vaaaa…
Seguir leyendo El hexágono de Saturno

Respuestas XVII: ¿Qué es un quásar?

Esta semana, para la sección de respuestas, me he fijado en las cosas que comentáis en las fotos que cuelgo en Facebook, como esta de la galaxia Centauro A:

Como cada vez que subo alguna foto del espacio alguien interviene diciendo que es un quásar, voy a explicar de una vez qué es un quásar para salir de dudas.

En la década de los 60, los astronómos empezaron a detectar fuentes de ondas de radio que llegaban de varias partes del universo pero, cuando apuntaban hacia ellas con sus telescopios, no encontraban nada.  No fue hasta 1962 que se observó por primera vez, 3C 273, el primero de estos objetos que, además, emitía luz visible.

Hong-Yee Chiu, un astrofísico estadounidense de origen chino, acuñó el término “quásar” en 1964. Quería que la palabra fuera fiel a la realidad, pero tampoco había una teoría que explicara qué estaba viendo, así que decidió llamarlos “Quasi Stellar Radio Sources” (Fuentes de Radio Casi Estelares), porque parecen estrellas (de ahí el “quasi”) pero no son estrellas y emiten ondas de radio. Tomando las letras que le dieron la real gana, abrevió el término en algo que sonaba bonito.

3C 273 en todo su esplendor. El churro de la parte inferior es parte del quásar. No os preocupéis, también hablaré de ello al final de la entrada.

Gracias al descubrimiento del quásar 3C 273, pudieron medirse algunas de sus propiedades analizando la luz visible que nos llegaba de él. Los resultados revelaron que:

1) Está alejándose de nosotros a una velocidad de 45.000 kilómetros por segundo,

>2) Se encuentra a 2.400 millones de años luz de la Tierra.
_________________________________________________________________________________
Esto es un inciso para poner esta unidad en perspectiva, porque 2.400 millones de años luz se leen muy rápido.

Un año luz equivale a la distancia recorrida por un rayo de luz durante un año (recordamos que los años luz son unidades de distancia, no de tiempo). Como la luz se desplaza a unos 300.000 kilómetros por segundo, durante un año recorrerá 9.460.528.400.000 kilómetros o, 9.46 billones de kilómetros. Pero esta cosa se encuentra a 2.400 millones de años luz de distancia de la Tierra. Es decir, que está a 27.205.268.160.000.000.000.000 o 27.2 trillones de kilómetros de nosotros.

Esto son tantos kilómetros como átomos hay en 7.43 gramos de oro. No sabemos si esta comparación aclara nada realmente, pero nos ha hecho ilusión calcularlo.
_________________________________________________________________________________

Una de las características que define a los cuásares es su lejanía. El más cercano que se conoce está a 600 millones de años luz de distancia, por lo que no es de extrañar que resultara muy difícil distinguir la poca luz visible que llega desde tan lejos.

De hecho, algo tan distante tiene que ser extremadamente brillante para poder observarlo desde nuestra posición y 3C 273, por ejemplo, cumple este requisito: si este quásar se encontrara a 32.6 años luz de distancia (2.056.000 veces la distancia entre la Tierra y el Sol),  lo veríamos tan brillante como el Sol.

Pero, ¿Qué demonios puede brillar tanto?

Un brillo extremo sólo puede venir de otro fenómeno extremo: un agujero negro muy grande.

¿Y por qué tiene que ser un agujero negro precisamente?

Porque un agujero negro es capaz de extraer más energía de la materia que cualquier otra cosa que conocemos. Por ejemplo, mientras que la reacción de fusión nuclear de una estrella tan sólo convierte un 0.7% de la materia que interviene en energía, un agujero negro puede extraer hasta el 10%.

Espera un momento… ¡Pero si los agujeros negros no brillan! De hecho, ¡absorben luz! Parece mentira que una página de este calibr…

¡Basta ya!

En el centro de toda galaxia (o casi toda) hay un agujero negro supermasivo alrededor del cual orbitan el resto de las estrellas. En nuestro caso, por ejemplo, el agujero negro que ocupa el centro de la Vía Láctea, Sagitario A, tiene una masa de 4.3 millones de soles.

Los agujeros negros de los quásares más pequeños, en cambio, tienen una masa de unos 100 millones de masas solares y en los más grandes se han registrado agujeros negros de miles de millones de masas solares.

Ya, pero te he preguntado por qué brillan.

Ya vaaaa…

Los cuásares, como hemos dicho, son agujeros negros supermasivos rodeados de materia que gira a su alrededor hasta caer en su interior. Esta materia es, en su gran mayoría, gas. A medida que el gas se acerca al agujero negro, su órbita se va volviendo más cerrada. A su vez, el agujero negro tira con más fuerza del gas que está más cerca, por lo que la materia va moviéndose más deprisa a medida que se aproxima al horizonte del monstruo.

La fricción que se genera entre las partículas que componen el gas a estas velocidades, una fracción respetable de la velocidad de la luz, es inmensa. La fricción inmensa genera una cantidad de calor proporcional, por lo que el material alcanza temperaturas de más de 44.000.000ºC y empieza a brillar con una fuerza que ninguna estrella puede igualar (la superficie del sol, por ejemplo, ronda los 6.000ºC).

Esto, unido al ritmo alarmante con el que estos monstruos tragan materia, es lo que les da su brillo. Se estima que los quásares más brillantes devoran unas 1.000 masas solares cada año, o el equivalente a casi 3 soles al día que a su vez son 10.56 Tierras por segundo.
Lo que a su vez son 840.884.352.000.000.000.000.000… HUMANOS POR SEGUNDO.

Una última pregunta… ¿Y qué son los chorros que salen por los extremos del quásar?

Este, por ejemplo, del objeto M87, descubierto en el siglo XVIII, que resultó ser un quásar.

El gas, como hemos dicho, orbita alrededor del agujero negro central cada vez más deprisa hasta que cae en su interior. Como hemos dicho también, en el borde del agujero negro la materia se desplaza a velocidades cercanas a las de la luz, lo que le otorga una energía inmensa. A tan altas energías, cuando es desviada hacia los polos mientras rota alrededor del agujero negro, parte de ella puede llegar a escapar. Es decir:

Respuestas VIII: Estrella de neutrones.

El otro día colgábamos una entrada sobre lentes gravitacionales y adjuntábamos una animación que ilustraba qué pasa con la luz que recibes de tu alrededor en la superficie de una estrella de neutrones.

El eminente sucedáneo de Eduard Punset, Heduart Punseto, un habitante de Youtube que veranea en Twitter, nos ha enviado este vídeo bizarro desde la sede de los laboratorios del LHC, en Suiza.

Fallo nuestro, Dr. Punseto, tendríamos que haberlo explicado en vez de depender de una animación pixelada.

Para no tener que escribir, hemos grabado también una introducción para resumir la situación, ahora con un 200% más de apatía.

Lentes gravitacionales

Dejo aquí esta imagen sin ninguna explicación y te reto a adivinar lo que es sin mirar leer el resto de la entrada. 

No, no, aunque lo sepas puedes seguir leyendo.
Ni siquiera la luz puede escapar de un agujero negro” es una frase que suena familiar aunque no se sienta ningún interés por la astronomía. Y es verdad, la fuerza gravitatoria de un agujero negro es tan grande que absorbe hasta la luz, pese a que viaje por el espacio a 300.000 kilómetros por segundo. Pero no hay que ser una singularidad de densidad infinita para tocarle la moral a la luz.
Pero, si los fotones, las partículas que componen la luz, no tienen masa- estamos simplificando para no soltar una parrafada extra, físicos, por favor, detened a vuestros sicarios- ¿Cómo puede afectarles la fuerza de la gravedad?

La gravedad como la entendemos, según la Relatividad General, no es exactamente una fuerza que ejerce su influencia sobre las cosas, sino una distorsión del espacio-tiempo.

La manera de representarlo es el típico ejemplo de la bola sobre una malla. Si el espacio fuera una malla elástica estirada, entonces la gravedad sería la distorsión que un objeto crea al posarse sobre ella. Cualquier cuerpo que intente atravesar esta distorsión va a ser desviado, ya sea un planeta, Ronnie Coleman, un asteroide o la propia luz.

Aunque, para representar mejor el fenómeno de la gravedad y la malla, habría que añadirle una tercera dimensión a la malla, meter la bola dentro y que de alguna manera esta tirara de ella en todas direcciones. Es un ejemplo algo más contraintuitivo, pero queda algo así.

Así que cuando un objeto muy masivo, normalmente una galaxia, se interpone entre nosotros y algo brillante, la distorsión que crea en el espacio desvía la luz a su alrededor y nos la devuelve con un ángulo diferente. Desde nuestro punto de vista no percibimos esa desviación, y nos parece que el objeto está ahí de donde viene la luz.
A escala en la imagen: nada.
Hay muchos grados de desviación, según la masa del cuerpo que actúa como lente, la distancia a la que esté del objeto y de nosotros. Con esta herramienta se puede jugar un poco con estos parámetros y ver la lente gravitacional resultante.
Hay muchos ejemplos de lentes gravitacionales, el más famoso de ellos es la “cruz de Einstein”, a quien se le dio el nombre de este afamado científico porque en parte lo predijo cuando desarrolló la relatividad general.

“¿Revoluciono la física y me lo agradecéis poniéndole
mi nombre a ESTO?” – Albert Einstein. 

Y, como siempre, la cosa se sale de madre por algún lado.
En este caso, son las estrellas de neutrones las que rompen el saco. Aconsejo familiarizarse un poco con los agujeros negros en esta entrada antes de seguir leyendo.
¿Ya está? Bien.
Las estrellas de neutrones son las hermanas pequeñas de los agujeros negros. Si habéis leído la entrada que os he mencionado, sabréis que un agujero negro son los remanentes comprimidos hasta el extremo de una estrella muy masiva
Cuando una estrella inmensa llega al final de su vida, estalla con la explosión más potente que se conoce: una supernova. Esto manda a tomar por saco las capas superficiales de la estrella y comprime el núcleo con una fuerza inimaginable. Lo que queda cuando se disipa todo el desastre es el mismo núcleo de la estrella, sólo que muchísimo más pequeño y con muchísima más masa.
Según lo grande que fuera la estrella, una mayor o menor cantidad de masa quedará compactada en el núcleo y dará lugar a:
1) Un agujero negro, un punto de densidad infinita en la que no pueden aplicarse las leyes de la física.
2) Una estrella de neutrones, una esfera tan densa que si pudiéramos acercarnos, coger una cucharada de té (unos 5 mililitros) de su superficie, traerla de vuelta a la Tierra y… 
… Bueno, una cucharadita de estrella de neutrones pesaría unos 5.000.000.000.000 (cinco billones) de kilos, así que el aterrizaje de la nave que trajera eso de vuelta sería un poco accidentado y toda esa masa probablemente acortaría el día unos microsegundos o algo por el estilo, así que olvidémonos de esta expedición estrafalaria.

A parte de su densidad y tamaño, tampoco sabemos mucho de las estrellas de neutrones, de todas maneras.

Traducción de más o menos toda la imagen: “no tenemos ni 
idea, así que vamos a poner conceptos generales y palabras técnicas  
que suenan bien”. Fuente: astro.umd.edu.
La cuestión es que, al contrario que un agujero negro, las estrellas de neutrones tienen una superficie sobre la que podrías pasear tranquilamente si fueras capaz de soportar 200 mil millones de veces tu propio peso, mientras conservan un potente campo gravitatorio debido a la enorme cantidad de masa que las compone. 
Y, en ese caso, podemos simular cómo verías el cielo a medida que te vas acercando a una estrella de neutrones y la sobrevuelas cerca de la superficie. Básicamente, estarías observando lentes gravitacionales allá donde miraras.

Hay que entrar el siguiente link, ya que es una especie de “gif” convertido en una animación “flash” y no he conseguido adjuntarlo directamente en el “post”.

Explico un poco de qué va el asunto, por si hay problemas con el inglés.
La animación nos muestra una nave acercándose a la Tierra, y las estrellas de fondo no cambian porque la gravedad terrestre es demasiado débil como para afectar a la luz. 
A partir de este punto, imaginamos que la Tierra es una estrella de neutrones. A medida que nos acercamos a ella, el fondo estrellado empieza a distorsionarse progresivamente porque la luz está siguiendo el espacio-tiempo fuertemente distorsionado. Si nos ponemos a rotar alrededor de la estrella, el panorama se vuelve aún más bizarro.

Finalmente, la animación imagina que sobrevolamos la estrella de neutrones a cierta distancia de la superficie. El cielo parece volverse completamente loco en este punto y las estrellas se desplazan hacia la franja central del cielo y escapan hacia arriba. El propio horizonte se curva hacia arriba por el mismo efecto y cada vez que giraras la cabeza el panorama cambiaría.

La animación termina diciendo que la vida en una estrella de neutrones sería como vivir en una “fun house”, que se traduce como “casa de la diversión”, que supongo que es alguna atracción de feria divertida.

Personalmente, a este caos no le veo la diversión por ninguna parte.

¿Cómo se forma un agujero negro? ¿Podría el acelerador de partículas producir uno?

Gonzalo Hernández rescata del baúl de los recuerdos una duda que en su día preocupó a más de uno: ¿Podría producir un agujero negro el LHC, el acelerador de partículas más grande del mundo?

Así que vamos a ver primero en qué condiciones se forman los agujeros negros para ver si podría aparecer uno en el interior de nuestros aparatos más sofisticados.

Los agujeros negros aparecen del colapso final de estrellas que tienen, al menos, 20 veces la masa de nuestro propio sol. Pero, para ver cómo ocurre esto, tenemos que saber primero por qué brillan las estrellas.

El centro de una estrella es una explosión termonuclear constante. En todo momento, parejas de moléculas de hidrógeno se están fusionando entre sí para convertirse en helio, un elemento más pesado. La reacción libera una cantidad tremenda de energía… Bueno, la energía resultada es de tal magnitud que en la Tierra usamos la reacción para construir bombas H, las armas más devastadoras jamás creadas. En el siguiente vídeo, a partir del minuto 1:15, podemos ver un ejemplo.

O sea, que en el núcleo de una estrella se genera de manera constante una onda expansiva termonuclear descomunal.

Eh, eh, entonces, ¿Cómo puede una estrella tener forma de esfera si algo dentro está explotando? ¿No debería salir despedida en todas direcciones?
Seguir leyendo ¿Cómo se forma un agujero negro? ¿Podría el acelerador de partículas producir uno?

¿Son peligrosas las tormentas solares?

Según la NASA, últimamente el sol está haciendo cosas que no se esperaban. Pero no compremos aún el kit de supervivencia. Calma.Se habla mucho de llamaradas solares que podrían desatar una tormenta geomagnética que devolvería a nuestra sociedad al siglo XVIII pero, ¿alguien se digna a decirnos qué son y si deberíamos preocuparnos?

Estos titulares no venden.

En primer lugar, el sol es una explosión termonuclear constante de un millón y medio de kilómetros de diámetro que representa el 99.86% de la masa de todo el sistema solar. No debería extrañarnos que, de tanto en tanto, haga cosas raras. De hecho, lleva haciendo cosas raras desde hace millones de años, con una media de un suceso perjudicial para nuestros sistemas eléctricos cada 500 años, según se puede deducir de los registros dejados por las tormentas geomagnéticas en las capas más profundas del hielo antártico. Pero, claro, de eso no teníamos que preocuparnos hasta hace poco.
Seguir leyendo ¿Son peligrosas las tormentas solares?