Archivo de la categoría: Astronomía

Respuestas (LXXI-2): ¿Qué pasaría si los planetas se alinearan?

En la entrada de la semana pasada estuve explicando por qué es muy probable los planetas de nuestro sistema solar nunca se hayan alineado en el pasado… Y por qué no lo harán en el futuro cercano.

Pero dejemos de lado las improbabilidades durante un rato e imaginemos por un momento que todos los planetas del sistema solar se alinearan.  ¿Qué efecto tendría este evento sobre nuestro planeta? ¿Podrían los campos gravitatorios de los otros cuerpos celestes sacarnos de nuestra órbita y estellarnos contra el sol? ¿Desencadenarían el caos en la Tierra en forma de terremotos y erupciones volcánicas? En definitiva, ¿provocarían algo parecido a los escenarios apocalípticos descritos en las obras de ficción y las páginas web catastrofistas absurdas?

Para responder a estas preguntas, hablemos primero sobre campos gravitatorios.

¿Ya te estás yendo por las ramas otra vez?

Es sólo un pequeño apunte, voz cursiva. Paciencia pls.

Habréis escuchado alguna vez que la intensidad de un campo gravitatorio es inversamente proporcional al cuadrado de la distancia. Puede que os suene raro dicho de esta manera, pero esta frase simplemente significa que la fuerza gravitatoria que actúa sobre ti disminuye (o aumenta) muy rápidamente cuando te alejas de (o acercas a) un objeto: el objeto te atraerá con una fuerza 4 veces menor si doblas la distancia que te separa de él, 9 veces menor si la triplicas, 16 si la cuadruplicas… Y, bueno, os podéis hacer una idea de cómo seguiría el asunto (si te acercas en vez de alejarte, la fuerza aumenta siguiendo la misma progresión).

Es importante tener en mente cómo varía la intensidad gravitatoria con la distancia porque, aunque algunos planetas del sistema solar sean muchísimo más masivos que la Tierra y, por tanto, tienen campos gravitatorios más poderosos, las distancias que nos separan de ellos son bastante grandes (de decenas, cientos o miles de millones de kilómetros). Tanto, de hecho, que los efectos de su gravedad sobre nosotros son, como poco, muy pequeños.

Teniendo esto en cuenta, podemos analizar los efectos de una alineación planetaria como la de la siguiente imagen sin que nos sorprendan demasiado los resultados.

Como podéis ver, en este caso nos encontramos ante un escenario en el que el sol, Mercurio y Venus “tirarían” de la Tierra hacia el sistema solar interior, mientras que Marte, Júpiter, Saturno, Urano y Neptuno nos intentarían arrastrar hacia la región exterior.
Seguir leyendo Respuestas (LXXI-2): ¿Qué pasaría si los planetas se alinearan?

Respuestas (LXXI-1): ¿Con qué frecuencia se alinean los planetas?

A videntes, astrólogos y otros singingmornings les gusta mucho apelar a las alineaciones planetarias (o a cualquier fenómeno celeste poco frecuente, en realidad) como una fuente de “cambio energético“, “regeneración espiritual” o algún otro concepto metafísico que no tiene sentido más allá de los límites de sus paredes craneales y las de sus seguidores. Pero, ignorando todas estas consecuencias inventadas y abstractas, ¿qué pasaría realmente si todos los planetas del sistema solar se alinearan?

Esta es la pregunta que me ha enviado un lector anónimo a jordipereyra@cienciadesofa.com y que voy a responder en dos entradas diferentes: en el artículo de hoy hablaré sobre las propias alineaciones planetarias y la posibilidad de que ocurran, mientras que el próximo día trataré los posibles efectos que podría (o no) tener uno de estos eventos sobre nuestro planeta.

Dicho esto, veamos primero en qué suele pensar la gente cuando habla de una alineación planetaria (junto con el sol, claro):

Sobra decir que, en la vida real, los planetas están bastante más separados.

Creo que los lectores ya lo tenían bastante claro, Ciencia de Sofá.

Bueno, ya, pero es que quería tener una excusa para colocar una imagen en la cabecera del artículo.
Seguir leyendo Respuestas (LXXI-1): ¿Con qué frecuencia se alinean los planetas?

¿Qué pasaría si “desconectáramos” la gravedad?

Oye, voz cursiva, si te encontraras frente a un botón que te permitiera “desconectar” la gravedad en todo el universo al pulsarlo, ¿lo presionarías?

¿Qué tipo de pregunta es esa? ¡Pues claro! Así podríamos flotar hasta cualquier parte del mundo, mover cosas enormes sin esfuerzo y, en general, todo sería mucho más divertido.

Vale, vale, entonces voy a utilizar esta entrada para convencerte de que, en el caso de que algún día alguien ponga ante tus narices ese botón hipotético, no deberías presionarlo.

En primer lugar, hay que aclarar que pulsar ese botón no afectaría en a los objetos cuya cohesión estructural no depende de su campo gravitatorio, sino de las fuerzas electromagnéticas que existen entre sus átomos. Es por eso la integridad física de los objetos con los que interaccionamos en nuestro día a día no se vería afectada por la desconexión de la gravedad: nuestros cuerpos no se desparramarían por el suelo, los vehículos no se caerían a trozos y nuestras casas no se vendrían abajo.

Pero esa es la única buena noticia para los seres humanos (y la vida en general) que vas a ver en esta entrada, voz cursiva.

Como comentaba cuando explicaba qué pasaría si la rotación de la Tierra se detuviera en seco, la velocidad a la que se mueve un punto cualquiera de la superficie de la Tierra depende de su latitud, siendo máxima en el ecuador (1.667 km/h) y mínima en los polos geográficos (0 km/h).

Como la gravedad nos mantiene en constante contacto con el suelo mientras la Tierra rota, nuestros cuerpos se mueven alrededor del eje de la Tierra a la misma velocidad que la superficie que tenemos bajo nuestros pies (u otras partes del cuerpo), de manera que no notamos este rápido movimiento en nuestro día a día. Pero, si la gravedad desapareciera, la fuerza que nos mantiene pegados al planeta desaparecería y todo objeto que no estuviera anclado al suelo saldría despedido hacia el espacio en una trayectoria tangencial a la superficie.

En realidad, las cosas que estuvieran ancladas al suelo no correrían una suerte mucho mejor si la gravedad desapareciera: sus cimientos seguirían dando vueltas en círculos alrededor del eje de la Tierra, pero cualquier parte de su estructura que se encontrara por encima de la superficie tendería a salir disparada hacia el horizonte. La magnitud de la destrucción variaría en función del tipo de estructura, claro: es posible que los árboles fueran arrancados del suelo de una pieza, mientras que los edificios y las montañas se desmenuzarían.
Seguir leyendo ¿Qué pasaría si “desconectáramos” la gravedad?

¿Qué es el Gran Atractor?

Si estás pasando el rato leyendo sobre los misterios del espacio y de repente te topas con algo llamado “el Gran Atractor“, seguramente no te vendrá nada bueno a la cabeza. En este universo en el que una de las cosas más terroríficas que hemos descubierto es que los agujeros negros existen, la idea de ser atraídos hacia algún otro lugar que no sea nuestro sol y en la medida justa para mantener una órbita estable a su alrededor no nos hace mucha gracia.

Es posible que por eso muchos me hayáis escrito preguntándome qué es ese “Gran Atractor“, tal vez con la esperanza de que os diga que todo va a ir bien, que es nuestro amigo y que nos está conduciendo hacia un lugar maravilloso. Y, aunque es verdad que el “Gran Atractor” no nos va a regalar caramelos, lo cierto es que tampoco nos va a destruir.

Deja de andarte por las ramas como si todo el mundo supiera de qué estás hablando y ve al grano.

Tienes razón, voz cursiva. Primero, pongamos un poco de contexto al asunto.

En la década de 1970, los astrónomos estaban estudiando la recién descubierta radiación de fondo de microondas, una señal de radio muy uniforme que llega hasta nosotros desde todas las direcciones del espacio. Se puede pensar en esta señal como un débil brillo que ilumina todo el cielo por igual, pero que no podemos ver porque nuestros ojos no son capaces de detectar este tipo de radiación electromagnética. O sea, que la existencia de este brillo se descubrió utilizando instrumentos que sí que pueden “ver” las ondas de radio: los radiotelescopios.
Seguir leyendo ¿Qué es el Gran Atractor?

¿Por qué los cráteres son (casi siempre) redondos?

En la sección de comentarios de la última entrada que publiqué (un vídeo en el que explicaba cómo podéis ver dos puestas de sol seguidas en vez de una), un lector llamado Odin se preguntaba por qué los cráteres tienen siempre forma redonda. Para ilustrar su duda con un ejemplo, echemos un vistazo a esta imagen de la superficie de la Luna:

En mayor resolución, aquí. (Fuente)

Teniendo en cuenta la cantidad de trayectorias en las que un objeto se puede dirigir hacia la Tierra, parece lógico que la mayoría de los meteoritos caigan en ángulo y excaven cráteres más “alargados”, así que el comentario generó varias respuestas interesantes, como que la gravedad de la Tierra modifica la trayectoria de los asteroides de manera que todos impactan de manera perpendicular al suelo o que la componente vertical de la velocidad durante la caída de un meteorito es tan grande que su velocidad horizontal no tiene ninguna influencia durante el impacto. Aun así, ninguna de ellas conseguía explicar la verdadera causa de este fenómeno porq…

… Porque están asumiendo que un meteorito choca contra el suelo como si fuera una piedra lanzada con mala leche, ¿verdad?

En efecto, voz cursiva. Me explico.
Seguir leyendo ¿Por qué los cráteres son (casi siempre) redondos?

Cómo ver dos puestas de sol en un mismo anochecer

Ya había mencionado en otro vídeo que subí a principios de este año que si veis una puesta de sol con la cara pegada al suelo y os levantáis deprisa cuando el último rayo de luz desaparece tras el horizonte, entonces podréis ver ese último trozo del sol desapareciendo de nuevo (y habréis visto una “puesta de sol doble”, vaya).

Pues, bien, en el vídeo de hoy uso este método para grabar dos puestas de sol seguidas, separadas por un intervalo de 11 segundos, Conocer esta cifra no sólo nos permite calcular el diámetro de la Tierra: en el proceso de obtenerla también podéis arruinar por completo (o mejorar sustancialmente, quién sabe) un romántico anochecer en la playa.

Respuestas (LXIX):¿Pueden dos planetas compartir la misma órbita?

He podido rascar algo de tiempo estos días para responder a una pregunta que Manuel Riguera me mandó por correo electrónico (a jordipereyra@cienciadesofa.com) y en la que me planteaba si existen sistemas planetarios donde dos o más planetas compartan la misma órbita.

Añado una imagen para que os hagáis una idea de la situación de la que está hablando (aunque probablemente los planetas no se encontrarían en puntos opuestos de de la órbita):

Para empezar, es posible os sorprenda saber que se han encontrado muchos asteroides que comparten órbita con los planetas de nuestro propio sistema solar. Y con  muchos quiero decir miles.
Seguir leyendo Respuestas (LXIX):¿Pueden dos planetas compartir la misma órbita?

¿Hasta qué altura puede saltar un astronauta en la Luna?

Cada vez que comparto la entrada en la que hablo sobre por qué sabemos que el ser humano ha llegado a la Lunaaparece un lector (o, al menos, alguien que comenta la página de Facebook) en la sección de comentarios que me reta a desmentir lo que, según él, es la prueba que demuestra de una vez por todas que la llegada a la Luna fue un montaje.

Por desgracia, no pude leer su argumento hasta que, unas semanas más tarde, me mencionó en un comentario en el que anunciaba al mundo que hacía tiempo que me había enviado el reto, pero que yo no había tenido suficiente queso en mis enchiladas como para plantar cara a su teoría.

¿Cómo se ve el sol desde la superficie del planeta Mercurio?

Jossel SC me envió un e-mail (a jordipereyra@cienciadesofa.com) en el que preguntaba qué tamaño tendría el sol en el cielo si lo viéramos desde la superficie del planeta Mercurio. La cuestión le vino a la cabeza a principios de este mes después de ver fotos del tránsito de este planeta por delante del sol. Como esta, por ejemplo:

Mercurio es ese círculo diminuto de la izquierda. (Fuente)

Y es verdad que en este tipo de imágenes puede dar la impresión de que el sol se debería ver tremendamente grande desde la superficie de Mercurio… Pero hay que tener en cuenta que las fotos son representaciones en dos dimensiones de un espacio tridimensional, así que la mayoría de ellas no reflejan con fidelidad las distancias que separan a los cuerpos celestes y, por tanto, tampoco sus tamaños relativos (de hecho, Mercurio es incluso más pequeño en relación al sol de lo que la imagen sugiere).

A efectos prácticos, el cielo es como una gran pantalla bidimensional en la que aparecen proyectadas las imágenes de los cuerpos celestes que nos rodean y, como sabréis, el tamaño aparente de las cosas cambia según lo lejos que estén de nosotros. Es por eso que la Luna es capaz de tapar el sol durante un eclipse: aunque nuestro satélite tiene un diámetro 400 veces menor que el sol (3.474 km contra 1.400.000 km), se encuentra unas 400 veces más cerca (382.000 km contra 150.000.000 km) y, en consecuencia, presenta más o menos el mismo tamaño en el cielo.
Seguir leyendo ¿Cómo se ve el sol desde la superficie del planeta Mercurio?

¿Es posible que existan galaxias hechas de antimateria?

En este blog he tratado varias veces el tema de la antimateria, como en esta entrada en la que explicaba qué es, en esta otra donde hablaba de los materiales más caros y esta otra en la que mencionaba cuáles son los materiales más mortíferos. Como podréis comprobar si leéis los artículos (guiño, guiño), la antimateria es un material bastante extremo y, por tanto, interesante.

En resumidas cuentas, la antimateria es la versión de la materia ordinaria que tiene propiedades opuestas.

Por ejemplo, los protones que contienen los núcleos de los átomos que componen nuestro cuerpo tienen carga positiva, pero los anti-protones tienen carga negativa. Los electrones tienen carga negativa pero su versión en antimateria, los positrones, tienen carga positiva. También hay antineutrones que, pese a que no tienen carga eléctrica, difieren de los neutrones ordinarios porque su número bariónico es -1 en lugar de +1 (lo sé, lo sé, tengo pendiente hablar de partículas subatómicas).

O sea, que un átomo de antimateria tendría esta pinta:

Y… Bueno, no hay muchas más diferencias. Aunque pueda parecer extraño para un material que parece sacado de una novela de ciencia-ficción, la antimateria en sí no tiene ninguna otra propiedad emocionante. Como explico en mi libro “El universo en una taza de café” (disponible en España y México en librerías y a través de internet, tanto en formato físico como electrónico, guiño, guiño), en su día se pensó que la antimateria podía poseer propiedades antigravitatorias y que tal vez formaba parte de la cola de los cometas. Por supuesto, hoy sabemos que no es así.
Seguir leyendo ¿Es posible que existan galaxias hechas de antimateria?