Archivo de la categoría: Atmosférica

El hexágono de Saturno

En 1980 y 81, la sonda Voyager sobrevoló el polo norte del segundo planeta más grande del sistema solar, Saturno, y se encontró con algo que fue fotografiado 32 años después por la sonda Cassini, que pasó por allí el 27 de Noviembre de 2012 y tomó la siguiente imagen:

Fotografía en espectro cercano al infrarrojo. Crédito: NASA/JPL-Caltech/Space Science Institute.

Con el 21 de Diciembre de 2012 a menos de un mes de distancia, una avalancha de difusores de pseudo-ciencia barata sacó el caso a relucir, cada uno explicando una mandanga diferente según el producto que intentaran venderte. Sabemos que no era vuestra intención, Mayas.

Menos palabrería y más explicarme qué es eso antes de que me compre un kit de supervivencia.

Ya vaaaa…
Seguir leyendo El hexágono de Saturno

Rayos Globulares

Se desata una tormenta en la calle y te aterrorizan los rayos, así que decides quedarte en casa porque estás convencido de que ninguna descarga eléctrica proveniente del cielo puede alcanzarte en tu habitación.

Si tan cobijado crees que estás, pregúntales a estos señores del siglo XIX por qué están tan asustados, entonces.

Fuente: wikimedia commons.

Los rayos globulares son un fenómeno que ha permanecido rodeado de misterio durante siglos, y no se ha encontrado una hipótesis decente que explique su causa hasta hace pocos años.

Se trata de bolas brillantes que aparecen durante algunas tormentas pero, debido a la rareza e impredecibilidad de este fenómeno,  hasta que han podido simularse en el laboratorio la única información disponible sobre ellas eran unos pocos testimonios aleatorios.

Seguir leyendo Rayos Globulares

¿Qué es un agujero de gusano?

Desde las primeras películas y novelas de ciencia ficción se han imaginado portales capaces de transportar instantáneamente a los seres humanos desde nuestro mundo con alguna remota parte del universo o, incluso, con un universo completamente distinto. En teoría esto sería posible gracias los llamados agujeros de gusano.

Espera, espera, ¿hay una base científica para creer esto, o es sólo un invento que no se sostiene por ningún lado?

Los agujeros de gusano derivan de las ecuaciones de la relatividad general de Einstein, que básicamente dicen que el espacio-tiempo puede representarse como una malla elástica y cualquier objeto con masa que descanse sobre ella (planetas, estrellas, galaxias…) la perturbará formando una depresión. El tamaño y la profundidad de la depresión variará según la masa del objeto que descanse sobre la malla y todo lo que pase a través de la zona distorsionada será susceptible de caer hacia el interior, a menos que lleve suficiente velocidad como para quedar atrapado dando vueltas en círculos alrededor de ella. En la vida real, esto se manifiesta como la fuerza gravitatoria.

Seguramente hayas visto alguna vez un gráfico por el estilo. Representa el sol hundiendo el tejido espacio temporal y la Tierra atrapada en la depresión dando vueltas.

En realidad, más que una malla plana sería un entramado tridimensional, y la perturbación se daría en una cuarta dimensión, pero eso no hay manera de visualizarlo.

Total, que, en teoría, si el tejido del espacio y el tiempo se puede deformar, deberíamos poder idear una manera de manipularlo que no consista en acumular un montón de materia hasta que se hunda.
Seguir leyendo ¿Qué es un agujero de gusano?

Respuestas VII: ¿Qué es el efecto Coriolis?

Jose Antonio Hernández me ha pedido si esta semana podría hablar del efecto Coriolis. No es una pregunta, pero creo que lo que quería decir realmente era: ¿Por qué los huracanes giran en sentido contrario a las agujas del reloj en el hemisferio norte y van al revés en el sur?

Muy buena pregunta, Jose Antonio.

Se suele culpar al efecto Coriolis de que el agua supuestamente gire en sentido contrario en los retretes de Australia. Esto no es cierto y, en caso de que se produzca realmente el fenómeno, es culpa de los fabricantes de váteres australianos que nos están tomando el pelo a todos y no del efecto Coriolis.

El mito fue propagado por una serie de documentales de la BCC llamado “Pole to Pole” (Polo a Polo) en 1992, en la que el presentador Michael Palin pasaba por una zona turística en Kenia, sobre la línea del ecuador. Allí encontraba a un tipo demostrando a los turistas cómo el agua giraba en sentido diferente (con desagües trucados) dependiendo de lado de la línea en el que se encontrara. Al final, resultó que todo era un montaje.

Vamos a ver por qué.

El efecto Coriolis es en realidad muy simple de explicar. En una esfera rotatoria, los puntos que se encuentran sobre el ecuador se mueven más rápido que los que están en latitudes más extremas.

Esto, que parece una tontería, tiene un gran impacto sobre la atmósfera de la Tierra. En el ecuador, nuestro planeta tiene un perímetro de 40.000 km y cualquier punto sobre él dará una vuelta completa alrededor de eje terrestre en 24 horas. La velocidad para cualquier punto del ecuador es, entonces, de 1.667 km/h. A medida que nos alejamos del ecuador, la circunferencia sobre la que nos encontramos es menor y, por tanto, un punto sobre su superficie da una vuelta más pequeña en el mismo tiempo, lo que significa que se ha movido a una menor velocidad. Por ejemplo, basándonos en esta fórmula, podemos calcular que Barcelona se mueve a unos 1.256 km/h alrededor del eje de la TierraReikiavik a 732 km/h, mientras que el polo norte geográfico no se desplaza en absoluto.

Como el aire no está “anclado” a la superficie de la Tierra, las masas de gas un poco alejadas de la superficie quedan algo rezagadas respecto al suelo. El efecto es mucho más intenso en la zona donde la velocidad de la superficie es mayor: el ecuador. Esto determina el sistema de circulación de los vientos según la latitud, que en general queda así.

Curiosamente, este comportamiento del aire, junto con el odio que la naturaleza siente hacia las bajas presiones, provoca que los huracanes y tormentas suficientemente grandesgiren en diferentes direcciones dependiendo del hemisferio en el que se encuentren.

¿Y por qué los huracanes sí que giran en sentido contrario según el hemisferio y los desagües no?

Los huracanes y tormentas pueden medir cientos de kilómetros de largo y sus extremos encontrarse sobre diferentes latitudes de la superficie terrestre. Como ya hemos dicho, cada latitud experimenta una velocidad diferente a medida que la Tierra rota, por lo que cada extremo del huracán se ve afectado por velocidades de giro diferentes y termina adoptando este patrón en espiral.

Un desagüe, en cambio, no se extiende a lo largo de varias latitudes. Los extremos de la masa de agua de tu lavamanos no están suficientemente separados como para que experimenten la rotación diferencial de la superficie terrestre, así que no sienten el efecto Coriolis.

¡Oye, oye! ¡Pero no te vas de aquí sin decirme qué pasaría entonces si la Tierra no rotara!

Obviamente, que la mitad del planeta luciría un bronceado envidiable…

…Y que la tendencia del aire de moverse entre focos fríos y calientes provocaría que sólo hubiera circulación de aire entre el ecuador y los polos.

Los noticiarios se volverían locos hablando de olas de frío polares.

Pero en materia de efecto Coriolis, en este planeta somos unos principiantes.

Cuanto mayor es una esfera y más rápido gira, más se acentúa el efecto. Gracias a esto, en Júpiter, que tiene un diámetro de casi 143.000 kilómetros (frente a los 12.756 de la Tierra) una tormenta de 20.000 kilómetros de ancho por 12.000 de largo lleva soplando desde, al menos, el año de su descubrimiento, en 1664, con vientos de hasta 432 km/h. En un despliegue de imaginación sin igual, su descubridor John Hooke la bautizó “la Gran Mancha Roja“.

Podemos hacernos una idea del tamaño, en comparación.

La atmósfera de Júpiter es la manifestación del efecto Coriolis en todo su esplendor: el planeta está compuesto prácticamente de gas y su día dura 9.9 horas, por lo que el ecuador se mueve a unos 45.400 km/h mientras a su alrededor se forman bandas de nubes más lentas que se mueven por el planeta en diferentes direcciones.

El siguiente vídeo fue tomado por la sonda Voyager I en 1979 (de ahí la calidad opuesta a HD) mientras se acercaba a Júpiter. Es una composición de fotos tomadas durante un periodo de 60 días y en ella se puede apreciar muy bien el movimiento en direcciones opuestas de las diferentes bandas creadas por el efecto Coriolis que se extienden por su atmósfera.

Pero, a su vez, Júpiter también es un novato si lo comparamos con el millón y medio de kilómetros de diámetro del sol.

Las diferentes velocidades de rotación a lo largo y ancho del volumen de nuestra estrella no sólo convierten su superficie en un caos: cuando las partículas cargadas del plasma que compone el sol se mueven a distintas velocidades, generan un campo magnético irregular y en constante cambio, lo que da lugar a llamaradas solares y eyecciones de masa coronal.

Evolución del campo magnético del sol a medida que este rota. El plasma se desplaza mucho más deprisa en el ecuador que en los polos. Fuente: physics.uc.edu.

Para entender mejor cómo el campo magnético del sol termina lanzando al espacio plasma a grandes velocidades, lo explicaba con más detalle en esta entrada sobre llamaradas solares.

Dejando de lado al sol,  he ido al baño a comprobar en qué sentido gira el agua de mi váter, y sigue el sentido contrario a las agujas del reloj.

Como decía, esto no tiene nada que ver con el efecto Coriolis. El responsable es este chorro que se apaga el último y que obliga al agua a girar en ese sentido.

Os animo a que comprobéis hacia qué lado gira el agua de vuestro retrete y de qué marca es y me lo digáis en los comentarios. Tal vez descubramos algo insólito.

¿Cómo se forman los rayos?

Todos hemos sido testigos de alguna descarga eléctrica de millones de voltios azotando la tierra. Algunos incluso hemos sido lo suficientemente afortunados para verlas prender fuego a cosas. Pero, si ya cuesta un rato cargar una interna manual que funciona con una cantidad ridícula de electricidad, ¿De dónde sale toda esa corriente que cae del cielo?
La ciencia que estudia los rayos se llama fulminología, que a nuestro parecer ostenta el récord al mejor nombre para una disciplina científica.
Para entender por qué se producen los rayos, veamos primero cómo funciona una corriente de agua.
¿Pero qué esta basura? ¿Me estás tomando el pelo?

No, aún no. La electricidad se comporta de manera parecida a un sistema fluvial. 

Por un lado, tenemos una reserva de agua que, por el mero hecho de estar por encima del nivel del mar, acumula un tipo de energía llamada energía potencial. Todo lo que se encuentra a cierta altura tiene energía potencial, ya sea una masa de agua o una persona en la terraza de un segundo piso, pero ésta no se manifestará hasta que se abra una vía de escape por donde disiparla: saltando por el balcón, en el caso de la terraza, o abriendo un agujero por dónde pueda salir el agua, en el caso de un lago. Será entonces cuando el sistema evolucione hasta alcanzar un estado de equilibrio.
“Estoy muy contento de haber 
quedado en equilibrio con la acera”
De la misma manera, para que fluya electricidad por un sistema necesitamos un bloque de un material que tenga muchísimos electrones y otro al que le falten. Los electrones tienden siempre a colocarse en el estado en el que menos energía ocupen, es decir, allá donde haya un hueco vacío donde meterse. Si tenemos dos materiales, uno al que le sobran electrones y otro al que le faltan, se dice entonces que, entre los dos materiales, hay cierto potencial eléctrico.
Pero, igual que la energía potencial no puede manifestarse hasta que le abrimos una vía de escape, este potencial eléctrico no tendrá ningún efecto hasta que unamos los dos bloques con un material por el que los electrones sean capaces de desplazarse con más o menos facilidad. Una vez unidos, éstos sacarán su lado humano y automáticamente huirán del bloque donde están todos aglomerados, buscando espacio libre para escapar de la multitud.
Los electrones son como nosotros en este aspecto y, cuando todo el mundo está cómodo en su sitio, nadie quiere volver a moverse. O sea, que lo que conocemos como corriente eléctrica no son más que carreras de electrones a través de un material conductor y, cuando los electrones dejan de pasar por el cable, se nos acaba el chollo.
En el siguiente dibujo, vemos lo que pasa en realidad cuando se nos acababan las pilas de la Game Boy: realmente no se “acaba” nada, sólo que las pilas han llegado al equilibrio.

¿Entonces qué tenía que ver todo esto con el ejemplo del puñetero río`?
Al hablar de electricidad, es inevitable que todos hayamos escuchado los términos voltaje, intensidad o resistencia. Si os pasa como a nosotros, los encontraréis conceptos difíciles de visualizar porque no tenemos ninguna referencia física para imaginarlos.
El siguiente ejemplo, ayuda bastante.
Al fin y al cabo, una corriente eléctrica y una de agua tienen el mismo fundamento: son un montón de partículas fluyendo por un tubo. En realidad, en el caso del agua son moléculas y en el de la electricidad, electrones, pero ambas siguen siendo puntos microscópicos en movimiento que no podemos ver a simple vista. 
Explicamos cada parte del dibujo.
1. Un flujo de agua circula por un tubo. Está claro que, cuanto más ancho sea el tubo, más agua podrá pasar al mismo tiempo. De la misma manera, la intensidad es la magnitud eléctrica que determina la cantidad de electrones que están pasando por la sección de un cable o, lo que es lo mismo, el equivalente al caudal de un río.
2. Luego está la llamada altura de columna, que viene a expresar la fuerza con la que el chorro de agua está siendo a empujado. Suponiendo un tubo situado en la base de un depósito, hay que tener en cuenta que toda la masa de agua que esté por encima del tubo estará presionando hacia abajo por efecto de la gravedad. Cuanto más alto sea el depósito, más masa habrá por encima de la salida empujando hacia abajo, por lo que el chorro de agua saldrá a más velocidad. Esto, cambiando moléculas de agua por electrones, sería el equivalente al voltaje.
3. La resistencia no es una propiedad propia de la corriente eléctrica, si no del material por el que está circulando. Básicamente, define la facilidad con la que pueden desplazarse los electrones por su interior. El cobre, por ejemplo, es muy buen conductor de la electricidad, por lo que ofrece poca resistencia al paso de corriente eléctrica. En términos hidráulicos, esto equivaldría a la rugosidad del tubo por el que pasa el agua: a más rugosidad, más energía perderá el flujo de agua al chocar contra las imperfecciones que cubren las superficie interior del tubo y más le costará desplazarse.
TOTAL.
Ahora que ya tenemos las bases necesarias, volvamos a los rayos. 
Cuando muchas nubes se acumulan en una zona, las partículas de agua que las componen, en conjunto, tienden a adoptar una carga negativa. No se sabe con certeza a qué se debe esto, unos dicen que por la polarización de pequeños cristales de hielo por efecto del campo magnético terrestre, otros argumentan que tiene que ver con la formación de aguanieve de densidades dispares en las diferentes capas de la nube. Para el caso que nos ocupa, a nosotros nos va a dar completamente igual.
La cuestión es que las nubes empiezan a cargarse negativamente (pierden electrones). Por suerte o por desgracia, el suelo tiene carga positiva. No estamos seguros de por qué, y no hemos conseguido encontrar una explicación por internet, pero probablemente tiene que ver con que el suelo está lleno de metales, a los que suelen sobrarles electrones por todos lados.
Llegados a este punto, lo único que separa a los electrones de su felicidad es todo el aire que hay entre  las nubes y el suelo
Pero el aire es un pésimo conductor de la electricidad… ¿No?
Que una cosa sea mala conductora de la electricidad no quiere decir que no conduzca la electricidad en absoluto. Sólo significa que una corriente que pretenda atravesarla tendrá que tener una tensión y una intensidad tremendas para compensar toda la energía que perderá durante el camino.
O sea que, hasta que la nube está muy cargada negativamente (le faltan muchísimos electrones), los electrones del suelo no acumulan la rabia suficiente para correr a rellenar todo ese montón de huecos en los que alojarse, formando lo que llamamos un rayo.  
El flujo eléctrico resultante suele tener un voltaje de 10 a 120 millones de voltios y una intensidad unos 30.000 amperios. En comparación, 10 miliamperios (0.0001 amperios)  pueden ser suficientes para detener un corazón humano. El voltaje no influye tanto a la hora de matar a una persona ya que, al fin y al cabo, esta magnitud tan sólo determina la velocidad con la que la corriente eléctrica se desplaza por el cuerpo. Lo realmente peligroso es la cantidad de electrones que nos atraviesan
Demasiados párrafos sin contenido visual. Procedo a incluir un poco para hacerlo más interesante.
Justo en el momento anterior a que los electrones empiecen a ascender del suelo hacia la nube, el aire se ioniza. Esto quiere decir que las moléculas de gas se separan en iones positivos y electrones, de manera que estos electrones libres ahora pueden moverse como les dé la gana y son capaces de abrir un “camino” desde la nube hasta el suelo. En el principio de este vídeo puede observarse que es un fenómeno más complejo de lo que podría parecer a primera vista.

El primer “tentáculo” en llegar al suelo marca el camino
que seguirá el rayo.

Lo curioso, en este caso, es que el aire empieza a ionizarse en todas direcciones, ramificándose en pequeños destellos que van abriéndose camino por donde les sale de las narices, buscando la carga positiva más cercana. Cuando una de estas ramas alcanza una carga positiva (en este caso, el suelo), conecta la nube con el suelo mediante la autopista eléctrica, y es entonces cuando todos los electrones encuentran vía libre para ascender a sus ansiados huecos libres en el cielo a unos 440.000 m/s.
Y, al fin, hemos entendido cómo funciona, más o menos, un rayo.
¡Eh, sinvergüenza, aquí no has dicho de dónde vienen los truenos que acompañan a los rayos!

Tienes razón. Por suerte, es rápido de explicar.

Como hemos dicho, el aire es muy mal conductor de la electricidad. Eso significa que cualquier corriente eléctrica que intente atravesar una masa de aire va a perder muchísima energía por el camino, y esta energía se disipará en forma de calor.
La potentísima corriente eléctrica de un rayo genera tanto calor a medida que atraviesan el aire, que éste se calienta muchísimo en un espacio muy corto de tiempo. Hablamos de temperaturas que pueden alcanzar los 28.000ºC, casi cinco veces la temperatura de la superficie del sol. Al calentarse, el aire tiende a expandirse por lo que, por la regla de tres, al calentarse a 28.000 grados, se expandirá a velocidades inimaginables. 
Esa expansión repentina del aire es que llega a nuestros oídos y nuestro cerebro interpreta como un sonido atronador
Vale, GRACIAS.

Y, a todo esto, caen como 50 rayos por segundo en la superficie de la tierra. Que cayera uno en el Vaticano el otro día tras la dimisión del Papa, no es más que una curiosidad estadística. Así que BASTA YA.

La Gran Mancha Roja

Una tormenta de nubes rojizas lleva soplando sin descanso desde hace más de 300 años y nadie se da cuenta, pero no hay que preocuparse: igual que el volcán más grande del sistema solar, este fenómeno no se encuentra en la Tierra.

En un alarde de originalidad sin precedentes, su descubridor recurrió a sus instintos más básicos y bautizó lo que estaba viendo a través del telescopio como la Gran Mancha Roja.

Nuestro corresponsal en Júpiter nos cuenta la historia.

Júpiter es el planeta más grande del sistema solar, con unos 140.000 kilómetros de diámetro (frente los 12.756 de nuestro planeta). Está compuesto, casi por completo, por gas (75% de hidrógeno, 24% de helio) y, de hecho, si tuviera una masa 10 o 12 veces mayor, su núcleo estaría sometido a la presión suficiente como para encenderse y convertirlo en una estrella.

Uno de los rasgos que nos puede resultar menos familiar de Júpiter es que no tiene una superficie sólida. En lugar de eso, su atmósfera va volviéndose más densa a medida que nos vamos acercando al núcleo (y hasta ahí hay un rato de camino), donde las presiones son tan altas que se especula sobre la existencia de hidrógeno metálico. En otras palabras: presiones tan altas que consiguen que un gas se comporte como un metal.

Por cierto, ¿He comentado ya que la tormenta de la que hablábamos al principio mide 20.000 km de largo por 12.000 de ancho? No, ¿Verdad?

Pero, en la Tierra las tormentas más grandes duran como mucho unos días, quizás semanas… ¿Por qué la Gran Mancha Roja lleva – al menos – 300 años activa?

Uno de los factores que hay que tener en cuenta es que la Tierra tiene una superficie sólida, por lo que una tormenta va perdiendo potencia a medida que el viento transmite la energía al suelo. En Júpiter, una bola de gas de diferentes densidades, una tormenta puede desplazarse perdiendo muy poca energía a causa del rozamiento.Otra razón, y quizás la más significativa, es el llamado efecto Coriolis.

Profundicemos.

Si la Tierra no rotara sobre su eje, además de una notable diferencia de bronceado entre sus habitantes, el aire tan sólo circularía de norte a sur. Esto es porque la temperatura se transmite de los focos calientes a los más fríos, y el aire caliente del ecuador, que recibe más radiación solar, tendería a desplazarse hacia los polos y viceversa, sin más efecto.

Básicamente.

Pero cuando entra en juego la rotación, la cosa cambia.

Como la atmósfera no está “anclada” a la superficie igual que un objeto sólido que descanse sobre ella, cuando el planeta rota hacia un lado, las capas de aire alejadas del suelo tienden a quedarse un poco rezagadas. El mismo efecto que tiene lugar cuando pasamos la mano por el agua: el líquido que se encuentra en contacto directo, o muy cerca, de la piel es capaz de igualar la velocidad que lleva la mano. Pero, en puntos más alejados, vemos que el fluido va mucho más lento. En un punto suficientemente lejano, el agua ni se ha movido.

Total, que, contando el efecto Coriolis, la atmósfera se convierte en esta locura.

(Fuente: www.astronomynotes.com)

Por si eso no fuera suficiente, el último dato a considerar, es que por algún motivo que no está del todo claro, Júpiter emite el doble de energía del que recibe del Sol. El flujo de calor proveniente del núcleo del planeta podría, en teoría, estar alimentando la tormenta desde las capas más bajas de la atmósfera.

Con todo lo dicho, tengamos en cuenta entonces dos factores:

1) Su diámetro es casi 11 veces el de la Tierra.

2) Tiene el periodo de rotación (el “día”) más corto de todo el sistemas solar, tardando sólo 9,9 horas en dar una vuelta sobre su eje.

Y teniendo en cuenta que el efecto Coriolis se intensifica cuanto mayores son el radio y la velocidad de giro,  no debería extrañarnos la existencia de una tormenta de 20.000 kilómetros de largo con vientos de hasta 400 km/h.

Así que pensémoslo dos veces antes de colapsar Facebook porque está lloviendo un poco.