Archivo de la categoría: Física

¿Son peligrosas las tormentas solares?

Según la NASA, últimamente el sol está haciendo cosas que no se esperaban. Pero no compremos aún el kit de supervivencia. Calma.Se habla mucho de llamaradas solares que podrían desatar una tormenta geomagnética que devolvería a nuestra sociedad al siglo XVIII pero, ¿alguien se digna a decirnos qué son y si deberíamos preocuparnos?

Estos titulares no venden.

En primer lugar, el sol es una explosión termonuclear constante de un millón y medio de kilómetros de diámetro que representa el 99.86% de la masa de todo el sistema solar. No debería extrañarnos que, de tanto en tanto, haga cosas raras. De hecho, lleva haciendo cosas raras desde hace millones de años, con una media de un suceso perjudicial para nuestros sistemas eléctricos cada 500 años, según se puede deducir de los registros dejados por las tormentas geomagnéticas en las capas más profundas del hielo antártico. Pero, claro, de eso no teníamos que preocuparnos hasta hace poco.
Seguir leyendo ¿Son peligrosas las tormentas solares?

Especial Física (I)

Después de los especiales sobre química I y II, toca cambiar de campo. Los más tiquismiquis (los fisicos) argumentarán que desde el principio he titulado mal las entradas, porque la química no es más que física a nivel subatómico, pero me da igual porque su disciplina es matemáticas aplicadas.
Así que, LETS GO.
En primer lugar, ¿qué pasa cuando dejamos caer un muelle completamente estirado desde una altura cualquiera? El siguiente gif nos lo muestra, pasándolo a cámara lenta para verlo mejor.
Fuente: 1veritasium.
A efectos prácticos, podríamos decir que esto es magia y olvidarnos del tema.
Pero estamos aquí para explicar las cosas, y eso es una putada.

Todo muelle tiene una constante elástica, que no es más que la “fuerza” con la que es capaz de contraerse una vez estirado. Para hacernos una idea de esta constante, si sujetamos el muelle en el aire, éste se alargará más o menos por su propio peso, dependiendo de la capacidad que tenga de recuperar su forma inicial. Un muelle muy fuerte, como el de la suspensión de un coche, ni siquiera se alargará por su propio peso.
En el caso del gif, en el que usan uno de esos juguetes que bajaban por la escalera, el muelle se alarga hasta una posición de equilibrio, y es ahí donde empieza el percal.

Muelle sujeto por un sistema de hilos, porque dibujar 
una mano en una posición compleja con el Paint es exasperante.

En el estado 1, la vida es perfecta. Estamos aguantando el muelle y el peso, transmitido hasta la base, está compensado por la fuerza elástica que tira de la masa hacia arriba.
Pero, al soltar el muelle, en el estado 2, el extremo que teníamos sujeto se vuelve loco porque, de repente, ya no hay una mano que compense la tensión que estaba experimentando. Sin manera de contrarrestar esta fuerza hacia abajo, el extremo superior del muelle empieza a caer.
A la base del muelle todo esto se la trae floja (estado 3). Sigue notando una tensión que le tira de arriba, igual al peso que la intenta arrastrar hacia abajo, así que ni se inmuta. 
Cuando, al fin, en el estado 4, el extremo que está comprimiéndose alcanza la base, todo el tinglado se viene abajo. Pero no cae a causa del impacto o por la velocidad que ha alcanzado la sección contraída, si no porque, una vez comprimido, el muelle ya no es capaz de ejercer fuerza. Como no hay ninguna tensión vertical hacia arriba que compense el peso, la gravedad toma el control de todo el sistema y lo arrastra hacia abajo.
OTRO.
En el siguiente gif podemos ver una bala desmenuzándose contra un muro de hormigón, casi comportándose como un líquido más que como un sólido. La imagen está grabada a 1.000.000 de fotogramas por segundo.

Crédito: Werner Mehl. www.kurzzeit.com

Lo primero en lo que deberíamos fijarnos es cómo la bala va rotando sobre su eje a medida que se acerca al muro. Los cañones de las armas de fuego tienen unos pequeños surcos en su interior que fuerzan la rotación de la bala, porque eso le da mucha más estabilidad a la trayectoria.

Pero eso ya lo sabías gracias a las películas de 
James Bond, ¿O no? Sí, representa la perspectiva desde
el interior de un cañón.

Y, luego, lo obvio, que una bala a altas velocidades se comporta como un trozo de mantequilla al chocar contra algo más duro que ella.
Tampoco es algo muy difícil, teniendo en cuenta lo blando que es el material del que están hechas, el plomo, en comparación con otros metales. 
Los materiales duros, al impactar contra alguna cosa o romperse, tienden a resquebrajarse por las zonas más débiles y separarse en trozos mayores que salen o no volando, dependiendo de la fuerza aplicada, y ahí termina la historia. 
Un material tan blando como el plomo se comporta más como plastelina: en vez de fragmentarse, se deforma indefinidamente hasta que queda irreconocible.
El curioso que, pese a que la bala se “pela” hacia afuera a medida que choca contra la pared de hormigón, la parte trasera impacta sin apenas deformarse. Esto pasa por tres cosas:
1- La deformación del resto de la bala ha absorbido parte de la energía del impacto, por lo que no pega tan fuerte.
2- Mientras que la punta impacta directamente contra el muro, la parte trasera golpea los restos que aún no se han apartado de la trayectoria, más blandos, de la bala que sigue desintegrándose.

3- La superficie de contacto de la parte posterior es mayor, con lo que la fuerza del impacto se distribuye.

Y, nada, ya vamos por el último.

Haciendo pasar corriente eléctrica altera a través de una bobina de cobre, podemos generar un campo magnético. Y es entonces cuando podemos meter algún trozo de metal para ver cosas interesantes, como esta.

El efecto producido por la bobina es similar al de los imanes: el campo magnético generado alinea y retiene los átomos del metal en una dirección, más o menos siguiendo el patrón que muestra esta figura.

Fuente: hamradioschool.com
Al colocar en medio el cilindro metálico, el campo magnético actúa como una especie de flujo ascendente que empuja todas las partículas del objeto hacia arriba, contrarrestando el efecto de la gravedad, que tira hacia abajo.
Ya, pero si para levitar tengo que prenderme fuego, creo que paso.

Un objeto no tiene por qué calentarse al meterlo en un campo magnético. De hecho, la Tierra está generando un campo magnético a tu alrededor y tu pelo no está en llamas. También es verdad que el campo magnético terrestre es relativamente débil.
De todas maneras, lo que ocurre aquí es que los campos magnéticos, además de tener la capacidad de  calentar cosas, también pueden generar electricidad en el interior del objeto que está sometido a ellos
Los electrones de los átomos que componen el material empezarán a moverse, intentando seguir la dirección del campo magnético. Como vimos en la entrada sobre rayos, “electrones moviéndose” es un sinónimo de “corriente eléctrica”, y las corrientes eléctricas tienden a generar mucho calor a medida que pierden energía al moverse a través de un material que no sea muy buen conductor de la electricidad. 
Sometido a un campo magnético suficientemente potente, como el del gif, los electrones del metal se mueven de manera suficientemente caótica y rápida como para generar una fuerte corriente eléctrica, que a su vez calienta muchísimo el material. Además, el material caliente es aún peor conductor de la electricidad, por lo que se genera incluso una mayor cantidad de calor hasta que al señor al cargo del experimento le da por apagar el aparato y, sin nada que lo sostenga en el aire, el cilindro cae y se chafa contra la mesa, enfriándose rápidamente en forma de diarrea metálica.
Y esto es todo por hoy.
Por cierto, después de que algunos visitantes regulares de la página me comentaran que no podían dejar comentarios en las entradas sin hacerse una cuenta de Blogger, he trasteado con la configuración y ahora todo el mundo puede comentar anónimamente. Así que, venga, todo el mundo a decir barbaridades desde la sombras.

Respuestas I: Disparo vertical.

Adalberto Aguerri nos mandaba por Twitter el siguiente haiku:

Oye, una bala disparada en vertical. 
Llegará hasta arriba y comenzará a bajar.
¿A qué velocidad llegará al suelo?

Y, sin querer, ha estrenado una nueva sección del blog en la que, una vez por semana, responderemos a cualquier pregunta que tengáis relacionada con la física, la química o cualquier otra ciencia, por extravagante que sea. Por ejemplo, “¿Qué intensidad de campo gravitatorio nos partiría los huesos?” o “¿A qué velocidad tendría que correr un leopardo para que prenda fuego por pura fricción contra el aire?“. Queremos ese tipo de incógnitas.

La sección se llamará “Respuestas”, y cualquiera puede mandar una pregunta por Twitter, Facebook, o al correo jordipereyra@cienciadesofa.com.

Sin más dilación, respondamos a Adalberto.

Mirando por Google, resulta que el calibre de bala más común es el .22, lo que significa que la cabeza de la bala mide 0.22 pulgadas de diámetro, o 5.6  milímetros. Estas balas, además, miden 9.8 milímetros de largo y pesan 3 gramos.

Ante nada, veamos la estructura de una bala.

Las medidas que hemos dado corresponden a la punta de la bala, sin contar el casquillo ni el peso de la pólvora, ya que queremos ver qué pasa con el proyectil. Lo que pase con el resto no nos interesa.

Supongamos que salimos pistola en mano al patio un día en el que no hay la más mínima brisa de aire. Supondremos, también, que tenemos un pulso imperturbable, que somos capaces de disparar balas perfectamente perpendiculares al suelo y que nadie llama a la policía.

Teniendo en cuenta las características del calibre .22 para rifles largos, sabemos que la pólvora que contiene el casquillo es capaz de propulsar la bala a 330 m/s al salir del cañón. Disparada hacia arriba, la bala irá perdiendo velocidad a medida que asciende, ya que la atracción gravitatoria de la Tierra la ralentizará a un ritmo de 9.8 m/s cada segundo. Usando las ecuaciones de tiro parabólico, podemos calcular que la bala va a perder toda su velocidad al alcanzar los 5.550 metros de altura. Llegada a ese punto, volverá a caer hacia el suelo.

Y ahora viene el quid de la cuestión. ¿Qué velocidad alcanzará la bala, cayendo desde 5.550 metros?

A primera vista, parecería que estaríamos condenados a ser atravesados de arriba a abajo por una trozo de plomo que no ha dejado de acelerar durante 5 kilómetros y medio, a menos que empezáramos a correr en círculos con las manos sobre la cabeza.

Pero, en ese caso, no estaríamos teniendo en cuenta el concepto de velocidad terminal.

Cuando un objeto cae de una altura cualquiera, el aire empieza a chocar contra él. Cuanto más rápido se mueva el objeto, más rozamiento se producirá, hasta llegar al punto en que la fuerza de rozamiento contra el aire sea igual a la fuerza con la que el objeto cae. Es entonces cuando el sistema objeto-gravedad-aire llega al equilibrio: pese a que la gravedad terrestre intenta acelerar aún más el objeto, el rozamiento contra el aire es tan grande que no lo permite.

Dependiendo de la masa del objeto, su área y forma, esta velocidad máxima, llamada también velocidad terminal, será menor o mayor. Los seres humanos, por ejemplo, pueden caer a 195 km/h.  Por eso tanto da caer de 150 metros de altura que de 10.000. En los dos casos, el impacto contra el suelo se produce a la misma velocidad.

Calcularemos la velocidad terminal de la bala. Con un peso de 3 gramos, teniendo un área de unos 290 milímetros cuadrados (he asumido que la bala tiene forma cilíndrica para calcularla), un coeficiente de rozamiento de 0.295 y tomando la densidad del aire en condiciones normales, 1.4 kilogramos por metro cúbico, obtenemos una velocidad terminal de 22.17 m/s, unos 80 kilómetros por hora.

Además, tan sólo tardará 2.2 segundos en alcanzar esa velocidad, que equivalen a unos 25 metros de caída. Eso significa que durante los siguientes 4.975 metros, la bala no acelerará un sólo metro por segundo más y caerá al suelo a esa velocidad.

Un objeto de 3 gramos cayéndote sobre la cabeza a poco menos de 80 km/h no parece motivo suficiente como para empezar a correr como una nenaza asustada, lo que es bastante decepcionante.

Pero cada año muere gente a causa de balas caídas del cielo. Entre 1985 y 1992, en el hospital King/Drew Medical Center de Los Ángeles, se registraron 118 heridos por balas que habían caído del cielo, 38 de los cuales murieron.

En el mismo informe, explica que la velocidad mínima estimada para que una bala ocasione una fractura craneal es de 67 m/s, muy lejos de nuestros 22.17 m/s.

Pero, ¿no acababas de decirme que no pasa nada?

Bueno, no pasa nada si la bala es disparada con una trayectoria perfectamente perpendicular al suelo.

A la mínima que el cañón está un poco desviado respecto a la vertical, la bala adquiere velocidad horizontal. Me explico.

Dependiendo del ángulo del disparo, la bala describirá una parábola más o menos cerrada. Hemos tratado un disparo vertical, donde toda la energía de la bala se disipa hacia arriba. Pero, en la realidad, los disparos completamente verticales son un fenómeno impensable.

Cualquier bala disparada por un ser humano tendrá cierto ángulo con respecto al suelo. Cuanto más cerrado sea ese ángulo, más se parecerá la trayectoria de la bala a una línea recta horizontal. Con ángulos muy abiertos, la trayectoria tenderá a parecerse cada vez más a un disparo vertical.

La diferencia entre los dos casos, es la cantidad de energía que se transfiere en cada dirección. Mientras traza una parábola, un proyectil va agotando su velocidad vertical a medida que asciende, hasta que la pierde por completo al llegar al punto de máxima altura. En ese momento empieza a caer, pero quien la acelera hacia abajo es la fuerza de gravedad de terrestre, hasta alcanzar la velocidad terminal.

La velocidad horizontal es otra historia. Restando los efectos del rozamiento contra el aire, que a esta escala son despreciables, la velocidad horizontal se mantiene más o menos constante durante toda la trayectoria, así que, en teoría, una bala al caer sí que podría matar a una persona si es disparada en el ángulo correcto.

Es decir, que pese a que la velocidad terminal sea relativamente baja, una bala puede desplazarse horizontalmente mucho más rápido mientras cae.

Según el mismo informe de antes, una bala desplazándose a 200 pies por segundo (unos 67 m/s) es capaz de ocasionar una fractura de cráneo e incluso penetrar en el cerebro, pero el daño será mínimo si impacta contra cualquier otra parte del cuerpo, debido al efecto amortiguador del tejido muscular. Para velocidades de 600 pies por segundo (200 m/s), una bala puede ocasionar graves lesiones, independientemente de dónde impacte.

El factor que determina la velocidad horizontal es el ángulo con el que disparamos. Para ángulos muy abiertos respecto al suelo, la parábola será muy cerrada y casi toda la energía terminará disipándose en el eje vertical, por lo que la bala tendrá una velocidad horizontal muy baja y será prácticamente inofensiva.

Conociendo la velocidad inicial de 330 m/s, definiendo 67 m/s como la velocidad mínima para resultar herido y 200 m/s para recibir un daño considerable o morir, podemos deducir finalmente la letalidad de una bala en función del ángulo de disparo.

Dispara con moderación, Adalberto (78.5º)*.

*Ciencia de Sofá no se hace responsable del uso que hagan Adalberto u otros lectores de esta información.

La señal “Wow!”

El 15 de agosto de 1977, el corazón de Jerry R. Ehman dio un vuelco al recibir este aterrador mensaje:

Ehman trabajaba para el proyecto SETI, una red de antenas dedicada a rastrear el cielo en busca de posibles señales de radio emitidas por alguna civilización extraterrestre. Ese día en concreto, estaba trabajando con el radiotelescopio “Big Ear” cuando de la impresora salió la siguiente tira de papel.

Incapaz de contener la emoción, Jerry cogió su boli rojo, rodeó con pasión aquellas letras y escribió “Wow!” junto a ellas, bautizando el momento sin querer.

Ya, todo esto está muy bien, pero ¿Y qué pasa con 6EQUJ5? 

Ante nada, hay que tener en cuenta que 6EQUJ5 no significa literalmente 6EQUJ5.
Seguir leyendo La señal “Wow!”

¿De qué color es un espejo?

Todos nos hemos preguntado alguna vez de qué color es un espejo. Tiene pinta de ser plateado, ¿no? Pero algo nos dice que ahí no acaba la historia. ¿Podríamos ver el color real con la luz apagada? No, las cosas no funcionan así.

Ante nada, vamos a aclarar una cosa: un espejo perfecto no tendría color, ya que reflejaría toda la luz incide sobre él, por lo que su color sería simplemente el del objeto reflejado.

Pero no vivimos en el mundo de las cosas perfectas, como nos intentan hacer creer los problemas de física del instituto. Ni siquiera el mejor espejo que podamos fabricar reflejará el 100% que incide sobre él y siempre habrá una pequeña cantidad que será absorbida por el material reflectante. Es una fracción tan pequeña que a efectos prácticos ni se nota, aunque puede manifestarse en algunas condiciones.

Empecemos por lo más básico: ¿Qué es color?

Seguir leyendo ¿De qué color es un espejo?

¿Qué es el agua pesada?

¿Qué líquido es exactamente igual que el agua, pero pesa un 11% más y probablemente te matará si bebes suficiente? (pista: no es ningún veneno transparente rebuscado)

Empecemos por lo básico.

La fórmula química del agua es H2O  lo que significa que una molécula está compuesta por dos átomos de hidrógeno y uno de oxígeno, formando más o menos una estructura de este estilo.

Hasta ahí bien.

Pero, a nivel atómico, no todo es tan sencillo. Cada átomo está compuesto de tres tipos de partículas: protones, neutrones y electrones. El número de ellos y la proporción de cada uno respecto a los demás, es lo que determina cómo será un elemento químico.

Los protones tienen carga positiva y los electrones negativa, mientras que los neutrones no tienen carga, o es neutra (propuesta para llamarles suizones denegada), tanto da.

Para que un átomo esté en equilibrio, tiene que tener el mismo número de cargas positivas que negativas, es decir, la misma cantidad de protones que de electrones. Lo único que diferencia un elemento de otro, de hecho, es el número de protones que contiene su núcleo.

A primera vista puede parecer que los neutrones carecen de utilidad. Tal vez no deberían existir. Tal vez deberíamos juntarlos todos y prenderles fuego, pero tampoco daría tiempo porque un neutrón aislado apenas dura 15 minutos antes de descomponerse en otras partículas más pequeñas. Pero, bueno, esto no viene el caso.

El agua, con todos sus componentes primarios y siguiendo el esquema de antes, quedaría así (me niego a hacer más círculos con el Paint, así que usaré gatos).

Además de ser necesarios para mantener los núcleos atómicos estables, los neutrones son la causa por la que se forman isótopos de todos los elementos.

Como ya hemos dicho, un elemento químico se caracteriza por el número de protones contiene en el núcleo, eso es inmutable. Pero sí podemos añadir o quitar neutrones de un átomo y seguirá siendo el mismo elemento, aunque sus propiedades cambiarán ligeramente. Es entonces cuando hablamos de isótopos.

Todos hemos oído hablar, por ejemplo, del carbono-14. El carbono tiene 6 protones, y esto es, ha sido y será así para cualquier átomo de carbono en cualquier parte del universo. El “14” que le sigue no es más que el número de partículas que contiene su núcleo (6 protones y 8 neutrones). De la misma manera, existen el carbono 12 y el 13, con seis y siete neutrones. En este caso, decimos que el carbono tiene 3 isótopos estables (porque en realidad existen desde el carbono-8 hasta el carbono-22, pero ninguno de ellos dura demasiado antes de desintegrarse).

Volviendo al agua, los átomos del hidrógeno de los que está constituida son los más simples y abundantes en el universo y se componen de un protón y un electrón. A esta configuración se le llama también protio.

Pero, pese a que esta configuración sea la más común (el 99,98% de la masa total de hidrógeno corresponde a protio), el hidrógeno tiene dos isótopos más: el deuterio y el tritio.

El deuterio tiene en su núcleo un protón y un neutrón, mientras que el tritio tiene un protón y dos neutrones. El tritio nos va a dar bastante igual, ya que es radiactivo y se usa sólo en la industria del armamento nuclear.

Volviendo al deuterio.

Pese a tener una partícula compañera en su núcleo, sus propiedades no varían mucho respecto al hidrógeno normal. La diferencia más notable es que pesa el doble que el hidrógeno corriente, ya que el centro ya no está ocupado por una sola partícula, sino por dos.

El deuterio no tiene ningún problema en enlazarse con oxígeno para formar moléculas de D2O  igual que el hidrógeno común forma H2O  El D2tiene el mismo aspecto que el agua corriente, pero una masa un 11% mayor que ésta. De ahí que nos refiramos a ello como agua pesada.

Un efecto curioso que produce este hecho, es que el hielo de agua pesada se hunde en agua normal en estado líquido, como aparece en este vídeo a partir del minuto 6:02.

El color anaranjado (o rosáceo, o lo que cada uno vea) del hielo se debe a que han mezclado una pequeña cantidad de tinte con el agua pesada para poder distinguir bien el experimento.

Luego, ocurre algo curioso: a medida que se funde, el hielo de agua pesada empieza a flotar. El señor del pelo afro canoso dice que esto es porque el hielo pesado se funde a una temperatura ligeramente menor que el agua corriente, así que ésta se vuelve a congelar sobre la superficie del hielo, bajando su densidad total. Pero hay algo que no menciona (y varios comentarios de Youtube parecen concordar conmigo): también contribuye a este fenómeno el hecho de que, al fundirse el hielo, el agua pesada se mezcla con el agua corriente y aumenta la densidad de la mezcla.

Pero bueno, sigamos con el tema que nos concierne a todos.

No se sabe mucho sobre los efectos nocivos sobre la salud del agua pesada.

Teniendo en cuenta que, de manera natural, uno de cada 7.000 átomos de hidrógeno es deuterio, y que el cuerpo humano cuenta con un 75% de agua, lo más probable es que ya tengas de 6 a 8 gramos de agua pesada corriendo por tus venas.

En esas cantidades no debe ser peligroso, porque entonces estaríamos todos muertos.

Lo que sí sabemos es que los enlaces que se forman entre el deuterio y el oxígeno en el D2O son un poco más fuertes que los del H2O.

También sabemos que muchos procesos químicos que nos mantienen vivos requieren de la descomposición del agua en hidrógeno y oxígeno. Al necesitar más energía para romper las moléculas de D2O, estos procesos podrían ralentizarse o detenerse por completo, matándonos de alguna manera.

Oye, pero no me ha quedado una cosa clara del todo… Si el deuterio pesa el doble que el hidrógeno, ¿Cómo es que el agua pesada sólo pesa un 11% más que el agua normal? ¿No debería pesar también el doble?

El hidrógeno es sólo uno de los componentes del agua. Una molécula de H2O consiste en dos átomos de hidrógeno y uno de oxígeno, mucho más pesado. Como protones y neutrones tienen masas muy parecidas, y los electrones pesan tan poco que se pueden despreciar, tomemos la masa de una partícula como 1.

El oxígeno tiene en su núcleo 8 protones y 8 neutrones, lo que le da una masa de 16 que, sumada a la masa de los dos átomos de hidrógeno, nos da una masa total de 18 para la molécula de agua.

En el caso del deuterio, el número total de partículas en la molécula ascendería a 20 al haber dos neutrones nuevos en el sistema. Podemos compararlo (más o menos) aquí.

Por tanto el agua pesada (con 20 partículas) será un 11.11% más masiva que el agua corriente (con 18 partículas). Locos del 11:11, manifestaos.

Y ahora, un breve mensaje publicitario.

Ciencia de Sofá tiene un libro nuevo, “Las 4 fuerzas que rigen el universo“, donde hablo sobre cómo las cuatro fuerzas fundamentales dan forma a nuestro universo, su descubrimiento y su efecto sobre nuestras vidas. Por otro lado, el libro “viejo” (“El universo en una taza de café“) va por la tercera edición y ahora vuelvo a ofrecer suscripciones a la revista de National Geographic así que, si os interesa alguna de estas propuestas, podéis acceder a una entrada donde las explico con más detalle haciendo click sobre la siguiente imagen 🙂

¿Cómo se forman los rayos?

Todos hemos sido testigos de alguna descarga eléctrica de millones de voltios azotando la tierra. Algunos incluso hemos sido lo suficientemente afortunados para verlas prender fuego a cosas. Pero, si ya cuesta un rato cargar una interna manual que funciona con una cantidad ridícula de electricidad, ¿De dónde sale toda esa corriente que cae del cielo?
La ciencia que estudia los rayos se llama fulminología, que a nuestro parecer ostenta el récord al mejor nombre para una disciplina científica.
Para entender por qué se producen los rayos, veamos primero cómo funciona una corriente de agua.
¿Pero qué esta basura? ¿Me estás tomando el pelo?

No, aún no. La electricidad se comporta de manera parecida a un sistema fluvial. 

Por un lado, tenemos una reserva de agua que, por el mero hecho de estar por encima del nivel del mar, acumula un tipo de energía llamada energía potencial. Todo lo que se encuentra a cierta altura tiene energía potencial, ya sea una masa de agua o una persona en la terraza de un segundo piso, pero ésta no se manifestará hasta que se abra una vía de escape por donde disiparla: saltando por el balcón, en el caso de la terraza, o abriendo un agujero por dónde pueda salir el agua, en el caso de un lago. Será entonces cuando el sistema evolucione hasta alcanzar un estado de equilibrio.
“Estoy muy contento de haber 
quedado en equilibrio con la acera”
De la misma manera, para que fluya electricidad por un sistema necesitamos un bloque de un material que tenga muchísimos electrones y otro al que le falten. Los electrones tienden siempre a colocarse en el estado en el que menos energía ocupen, es decir, allá donde haya un hueco vacío donde meterse. Si tenemos dos materiales, uno al que le sobran electrones y otro al que le faltan, se dice entonces que, entre los dos materiales, hay cierto potencial eléctrico.
Pero, igual que la energía potencial no puede manifestarse hasta que le abrimos una vía de escape, este potencial eléctrico no tendrá ningún efecto hasta que unamos los dos bloques con un material por el que los electrones sean capaces de desplazarse con más o menos facilidad. Una vez unidos, éstos sacarán su lado humano y automáticamente huirán del bloque donde están todos aglomerados, buscando espacio libre para escapar de la multitud.
Los electrones son como nosotros en este aspecto y, cuando todo el mundo está cómodo en su sitio, nadie quiere volver a moverse. O sea, que lo que conocemos como corriente eléctrica no son más que carreras de electrones a través de un material conductor y, cuando los electrones dejan de pasar por el cable, se nos acaba el chollo.
En el siguiente dibujo, vemos lo que pasa en realidad cuando se nos acababan las pilas de la Game Boy: realmente no se “acaba” nada, sólo que las pilas han llegado al equilibrio.

¿Entonces qué tenía que ver todo esto con el ejemplo del puñetero río`?
Al hablar de electricidad, es inevitable que todos hayamos escuchado los términos voltaje, intensidad o resistencia. Si os pasa como a nosotros, los encontraréis conceptos difíciles de visualizar porque no tenemos ninguna referencia física para imaginarlos.
El siguiente ejemplo, ayuda bastante.
Al fin y al cabo, una corriente eléctrica y una de agua tienen el mismo fundamento: son un montón de partículas fluyendo por un tubo. En realidad, en el caso del agua son moléculas y en el de la electricidad, electrones, pero ambas siguen siendo puntos microscópicos en movimiento que no podemos ver a simple vista. 
Explicamos cada parte del dibujo.
1. Un flujo de agua circula por un tubo. Está claro que, cuanto más ancho sea el tubo, más agua podrá pasar al mismo tiempo. De la misma manera, la intensidad es la magnitud eléctrica que determina la cantidad de electrones que están pasando por la sección de un cable o, lo que es lo mismo, el equivalente al caudal de un río.
2. Luego está la llamada altura de columna, que viene a expresar la fuerza con la que el chorro de agua está siendo a empujado. Suponiendo un tubo situado en la base de un depósito, hay que tener en cuenta que toda la masa de agua que esté por encima del tubo estará presionando hacia abajo por efecto de la gravedad. Cuanto más alto sea el depósito, más masa habrá por encima de la salida empujando hacia abajo, por lo que el chorro de agua saldrá a más velocidad. Esto, cambiando moléculas de agua por electrones, sería el equivalente al voltaje.
3. La resistencia no es una propiedad propia de la corriente eléctrica, si no del material por el que está circulando. Básicamente, define la facilidad con la que pueden desplazarse los electrones por su interior. El cobre, por ejemplo, es muy buen conductor de la electricidad, por lo que ofrece poca resistencia al paso de corriente eléctrica. En términos hidráulicos, esto equivaldría a la rugosidad del tubo por el que pasa el agua: a más rugosidad, más energía perderá el flujo de agua al chocar contra las imperfecciones que cubren las superficie interior del tubo y más le costará desplazarse.
TOTAL.
Ahora que ya tenemos las bases necesarias, volvamos a los rayos. 
Cuando muchas nubes se acumulan en una zona, las partículas de agua que las componen, en conjunto, tienden a adoptar una carga negativa. No se sabe con certeza a qué se debe esto, unos dicen que por la polarización de pequeños cristales de hielo por efecto del campo magnético terrestre, otros argumentan que tiene que ver con la formación de aguanieve de densidades dispares en las diferentes capas de la nube. Para el caso que nos ocupa, a nosotros nos va a dar completamente igual.
La cuestión es que las nubes empiezan a cargarse negativamente (pierden electrones). Por suerte o por desgracia, el suelo tiene carga positiva. No estamos seguros de por qué, y no hemos conseguido encontrar una explicación por internet, pero probablemente tiene que ver con que el suelo está lleno de metales, a los que suelen sobrarles electrones por todos lados.
Llegados a este punto, lo único que separa a los electrones de su felicidad es todo el aire que hay entre  las nubes y el suelo
Pero el aire es un pésimo conductor de la electricidad… ¿No?
Que una cosa sea mala conductora de la electricidad no quiere decir que no conduzca la electricidad en absoluto. Sólo significa que una corriente que pretenda atravesarla tendrá que tener una tensión y una intensidad tremendas para compensar toda la energía que perderá durante el camino.
O sea que, hasta que la nube está muy cargada negativamente (le faltan muchísimos electrones), los electrones del suelo no acumulan la rabia suficiente para correr a rellenar todo ese montón de huecos en los que alojarse, formando lo que llamamos un rayo.  
El flujo eléctrico resultante suele tener un voltaje de 10 a 120 millones de voltios y una intensidad unos 30.000 amperios. En comparación, 10 miliamperios (0.0001 amperios)  pueden ser suficientes para detener un corazón humano. El voltaje no influye tanto a la hora de matar a una persona ya que, al fin y al cabo, esta magnitud tan sólo determina la velocidad con la que la corriente eléctrica se desplaza por el cuerpo. Lo realmente peligroso es la cantidad de electrones que nos atraviesan
Demasiados párrafos sin contenido visual. Procedo a incluir un poco para hacerlo más interesante.
Justo en el momento anterior a que los electrones empiecen a ascender del suelo hacia la nube, el aire se ioniza. Esto quiere decir que las moléculas de gas se separan en iones positivos y electrones, de manera que estos electrones libres ahora pueden moverse como les dé la gana y son capaces de abrir un “camino” desde la nube hasta el suelo. En el principio de este vídeo puede observarse que es un fenómeno más complejo de lo que podría parecer a primera vista.

El primer “tentáculo” en llegar al suelo marca el camino
que seguirá el rayo.

Lo curioso, en este caso, es que el aire empieza a ionizarse en todas direcciones, ramificándose en pequeños destellos que van abriéndose camino por donde les sale de las narices, buscando la carga positiva más cercana. Cuando una de estas ramas alcanza una carga positiva (en este caso, el suelo), conecta la nube con el suelo mediante la autopista eléctrica, y es entonces cuando todos los electrones encuentran vía libre para ascender a sus ansiados huecos libres en el cielo a unos 440.000 m/s.
Y, al fin, hemos entendido cómo funciona, más o menos, un rayo.
¡Eh, sinvergüenza, aquí no has dicho de dónde vienen los truenos que acompañan a los rayos!

Tienes razón. Por suerte, es rápido de explicar.

Como hemos dicho, el aire es muy mal conductor de la electricidad. Eso significa que cualquier corriente eléctrica que intente atravesar una masa de aire va a perder muchísima energía por el camino, y esta energía se disipará en forma de calor.
La potentísima corriente eléctrica de un rayo genera tanto calor a medida que atraviesan el aire, que éste se calienta muchísimo en un espacio muy corto de tiempo. Hablamos de temperaturas que pueden alcanzar los 28.000ºC, casi cinco veces la temperatura de la superficie del sol. Al calentarse, el aire tiende a expandirse por lo que, por la regla de tres, al calentarse a 28.000 grados, se expandirá a velocidades inimaginables. 
Esa expansión repentina del aire es que llega a nuestros oídos y nuestro cerebro interpreta como un sonido atronador
Vale, GRACIAS.

Y, a todo esto, caen como 50 rayos por segundo en la superficie de la tierra. Que cayera uno en el Vaticano el otro día tras la dimisión del Papa, no es más que una curiosidad estadística. Así que BASTA YA.

Hidrofobia

Además de ser una excusa barata para la gente a la que no le gusta demasiado ducharse (es broma, en realidad es un síntoma mortal que padecen los individuos afectados por la rabia), una sustancia hidrófoba es aquella que repele el agua o que no es capaz de mezclarse con ella.
Hoy en día, el uso de la nanotecnología ha permitido llevar el fenómeno al extremo, con resultados que desafían nuestra percepción de la realidad.



El compuesto puede aplicarse también directamente sobre la piel, para conseguir el siguiente efecto.

Pero este fenómeno no se limita a sprays aplicables sobre otras superficies. Existen sustancias sólidas que manifiestan hidrofobia al ser cubiertas por una capa de pequeñas partículas de sílice y sometidas a un baño de vapor de trimetilsilano. El resultado es esta arena hidrófoba, por ejemplo.

Cuando entra en contacto con el agua, el recubrimiento de cada grano tiende a adherirse con el de sus vecinos más cercanos, sellando cualquier hueco por donde pueda colarse el líquido. Pero, ¿Por qué forma churros? Responderemos a eso con un churro de dibujo.

Al depositar la arena sobre una masa de agua, los granos de la capa que entra en contacto directo con la superficie líquida se pegan entre sí, impidiendo la difusión del líquido a capas superiores. De esta manera, el montón de arena quedará flotando sobre una especie de balsa compacta.
Como el centro de nuestro montículo de arena pesa más que el exterior, por el mero hecho de tener una pila más alta de material, la estructura tenderá a hundirse por en medio. Pero, como todo el tinglado está sustentado por una capa compacta e impermeable, la arena no puede atravesarla y hundirse en el agua. En lugar de eso, deforma la balsa impermeable, dándole forma de cúpula inversa.
Si, llegados a este punto, continuamos añadiendo masa (en el gif se deja caer un flujo constante de arena), el peso en el centro del montículo no dejará de aumentar,  por lo que la deformación inicial seguirá acentuándose. La presión del agua, que comprime la masa bajo el agua desde todas las direcciones con la misma fuerza, obliga a la protuberancia a tomar la forma que minimice en mayor grado la superficie de contacto: un cilindro.
Total, que al sacar la arena del agua los granos de arena se separan y, como el agua no había podido colarse en su interior, aparece totalmente seca, en contra de toda intuición.
Ahora sólo falta esperar impacientes el momento en que algún loco resuelva, dejando pruebas documentales, la siguiente ecuación:

Temperatura mínima

Medimos la temperatura con escalas que tienen sentido, como las escala ideada por Anders Celsius, que tomó como referencia los puntos de congelación y de ebullición del agua, dividió el intervalo entre 100 y obtuvo acuñó lo que llamamos ahora 1ºC.

Existen además los grados Réaumur, Rømer, Newton y Delisle, que ni sabía que existían hasta que me he puesto a buscar información para este artículo.

Pero hay una que es especialmente aberrante para la lógica: la condenada escala de Gabriel Fahrenheit, que decidió porque a él le daba la gana que la temperatura corporal media del cuerpo humano son 96ºF y que la temperatura más baja a la que podía enfriar una mezcla de agua, hielo y sal que tenía tirada por su laboratorio equivaldrían a 0ºF. Luego se dio cuenta de que, con esta escala el agua sin aditivos se congelaba a los 32ºF, y decidió usar este nuevo dato como referencia para calibrar un sistema sin sentido que arrastraría su odiado apellido por la historia: la escala Fahrenheit. 

¿Cómo puede ser que alguien utilice este sistema hoy en día? Cómo no, los estadounidenses, aunque no debería extrañarnos teniendo en cuenta su caótico sistema de unidades.

Me he tomado la libertad de hacer un par de gráficos para exponerlo de manera más visual.

Dejando a EEUU a un lado, y volviendo a lo que nos concierne, en 1848 William Thompson, o lord Kelvin, decide que es necesario un sistema que no tenga como referencia los estados de una sustancia cuyo punto de fusión y ebullición están sujetos no sólo a cambios en la temperatura, sino también a otros factores ambientales. 
En centrales térmicas, por ejemplo, hay tuberías que conducen agua a 400ºC en fase líquida, porque la presión impide que ésta se evapore. Es decir, que dos escalas Celsius tomadas en diferentes condiciones climáticas probablemente serían ligeramente diferentes debido a leves cambios en la presión atmosférica.
En el caso de los Fahrenheit probablemente no importaría, dado que el sistema es una mierda de todas maneras.
(Fuente: Google)
Dejando al cabrón de Fahrenheit de lado, el caso es que a Lord Kelvin se le ocurrió elaborar su escala basándose en la temperatura mínima que es capaz de alcanzar cualquier tipo de materia. Y aquí es donde por fin el post se pone interesante.
A nivel atómico, el fenómeno que percibimos como calor no es más que la velocidad a la que los electrones orbitan alrededor del núcleo atómico. Cuanto más rápido se muevan los electrones, con más fuerza vibrarán los átomos y, por tanto, se generará más fricción entre ellos. Esta cantidad de fricción es la que interpretamos como “temperatura”. 
Con lo explicado como referencia, es lógico pensar que la mínima temperatura posible será alcanzada cuando los electrones que giran alrededor del núcleo atómico se detengan por completo, y este fue el punto que Lord Kelvin definió como 0ºK (-273ºC), para más tarde adoptar los mismos incrementos de un grado que existen en la escala Celsius.