Archivo de la categoría: Respuestas

Respuestas (XLVI): ¿Cual es el planeta más grande conocido?

Hoy toca responder a una pregunta muy interesante que Marco Alfonso me envió por e-mail (a jordipereyra@cienciadesofa.com) la semana pasada: ¿cuál es el planeta más grande conocido?

Y resulta que la respuesta no es tan directa como podría parec…

¡Ah, no, no, no! A ti te han preguntado cual es el planeta más grande conocido, así que por una vez vas a dar un dato en vez de irte por las ramas.

Vale, está bien, voz cursiva, toma tu respuesta fácil: con una masa hasta 30 veces mayor que la de Júpiter, el mayor planeta de nuestro propio sistema solar, el planeta más grande que podría haberse descubierto hasta la fecha es un gigante gaseoso que tiene el romántico nombre de DENIS-P J082303.1-491201b, o 2MASS J082303.1-491201b para los amigos.

Eh, espera, ¿cómo que “podría haberse descubierto”? ¿por qué me dice Wikipedia que no se sabe con certeza si es un planeta o una estrella enana marrón? ¿Me estás intentando engañar?

¡¿Ves como me tengo que ir por las ramas?!

A grandes rasgos, existen dos tipos de planetas: los planetas rocosos (como Mercurio, Venus, la Tierra y Marte) y los planetas gaseosos (como Júpiter, Saturno, Urano y Neptuno).  Aunque su aspecto sea claramente distinto, la diferencia que más llama su atención entre los dos tipos de planetas es su tamaño.

Esta imagen me pareció curiosa, porque muestra cómo en los 300.000 kilómetros que separan la Tierra de la Luna podrían caber el resto de planetas del sistema solar. Y, de paso, os enseñaba la diferencia de escala que existe entre los planetas rocosos y los gaseosos de nuestro sistema solar. (Fuente)

Viendo la imagen, podéis imaginar que los astrónomos no se refieren a los planetas gaseosos como “gigantes gaseosos” sin un motivo: con un diámetro de 140.000 kilómetros, frente a los 12.756 de la Tierra, en el interior de Júpiter cabrían 1.300 planetas como el nuestro (previamente pulverizados para aprovechar todo su volumen, claro). Saturno tiene un diámetro de casi 120.000 kilómetros y los gigantes gaseosos más pequeños del sistema solar, Urano y Neptuno, tienen diámetros que rondan los 50.000 kilómetros.

Madre mía, ¿y a qué se deben estos tamaños tan dispares?

Buena pregunta.
Seguir leyendo Respuestas (XLVI): ¿Cual es el planeta más grande conocido?

Respuestas (LXIV): ¿Por qué duelen las antiguas fracturas o cicatrices cuando va a cambiar el tiempo?

Roberto López-Herrero, un escritor que tiene un porrón de libros publicadoshasta una página dedicada a él en Wikipedia, me preguntó hace un tiempo: ¿por qué duelen las antiguas roturas o cicatrices cuando va a cambiar el tiempo? 

Resulta que es un fenómeno muy interesante pero, por común que sea y pese a que casi todos tengamos algún familiar que dice saber cuándo lloverá en cuanto le empieza a doler algo, no está ampliamente estudiado. Eso no significa que no se hayan hecho estudios pero, como ocurre con las cosas relacionadas con este tipo de fenómenos, que muchas veces tienen una fuerte carga subjetiva, es complicado establecer la causa exacta del dolor. Algunos muestran muy claramente que los cambios de presión atmosférica son los responsables, mientras que otros concluyen que hay pacientes afectados en mayor o menor medida por otros factores como la humedad o la temperatura.

En cualquier caso, y aunque a primera vista tenga pinta de que este fenómeno debería estar relacionado con el frío, el viento o la humedad, parece que el consenso es que el verdadero culpable tras el dolor de cicatrices, lesiones y articulaciones artríticas cuando el tiempo cambia es la presión atmosférica.

Así que vamos a ver mediante qué mecanismo puede afectar a la presión atmosférica a nuestros débiles cuerpos mortales.
Seguir leyendo Respuestas (LXIV): ¿Por qué duelen las antiguas fracturas o cicatrices cuando va a cambiar el tiempo?

Respuestas (LXIII): ¿Qué tendría que pasar para que el sol diera vueltas alrededor de la Tierra?

Jon Koldo me comentó que hace un tiempo había leído esta noticia en la que se habla de un clérigo saudí que ha “echado abajo” la teoría heliocéntrica. El vídeo original se ha borrado, pero podéis ver sus argumentos en este otro. Básicamente, este señor dice dice que si la Tierra rotara nunca podrías llegar a China en avión (desde el oeste), porque la rotación del planeta estaría alejando el país de ti constantemente. Como sí que somos capaces de llegar a China en avión, la única conclusión lógica es que en realidad la Tierra está quieta y es el universo el que da vueltas a su alrededor.

Por supuesto, esto no tiene ningún sentido. Si su planteamiento fuera correcto cada vez que dieras un salto el suelo pasaría a toda leche por debajo de tus pies y, muy probablemente, acabarías estrellado contra algún muro o un árbol. En el ecuador, donde la superficie terrestre se mueve más deprisa, caerías a 464 metros del lugar desde el que te hubieras impulsado para saltar (suponiendo que pasaras un segundo en el aire y que no te estampas contra algo antes de caer). La marcha olímpica ganaría popularidad porque salir a correr resultaría una experiencia de los más extraña.

La cuestión es que esta afirmación no tiene ninguna validez e ignora de manera muy eficiente la física más elemental. Pero, aún así, a Jon Koldo le ha entrado la curiosidad y me ha preguntado (versión resumida de la pregunta): ¿cuánta masa debería tener la Tierra para que el sol diera vueltas a su alrededor? ¿qué consecuencias tendría esto para la vida en la Tierra?

Respuestas rápidas: 1) mucha, 2) no demasiado buenas.

Respuesta lenta: primero habrá que definir cuándo una cosa da vueltas alrededor de otra.
Seguir leyendo Respuestas (LXIII): ¿Qué tendría que pasar para que el sol diera vueltas alrededor de la Tierra?

Respuestas (LXI): El descubrimiento de Urano, congeladores en la Antártida y mareas en un vaso

Hoy toca ronda de respuestas, que tengo la sección un poco abandonada y quería ponerme un poco al día con las preguntas que me mandáis por e-mail.

La primera pregunta la vi en Facebook y apareció a raíz de la última entrada que publiqué. Sí, vale, sé que acabo de decir que respondería a las preguntas que me mandáis al correo electrónico, pero es que estaba perfectamente planteada para la sección de respuestas.

O sea (por si por algún motivo no podéis ver la imagen), ¿si Urano es visible a simple vista, por qué no se descubrió hasta el siglo XVIII?

Y esta es una pregunta muy curiosa porque, por su aspecto, los planetas no pueden diferenciarse a simple vista de las estrellas (excepto por el hecho de que, al contrario que las estrellas, los planetas no titilan). No puedes ver el disco de un planeta cargado de detalles simplemente mirando al cielo sin ayuda de un telescopio porque lo único que vemos al levantar la vista por la noche son un montón de puntos brillantes en el cielo.

Sin los nombres, en esta imagen no tendríamos manera de distinguir qué cosas brillantes son los planetas y cuál es la estrella (Spica). (Crédito: Peter Wong/EarthSky)

¿Podría el sistema solar ser un átomo gigante?

Mucha gente se hace esta pregunta, cuya versión extendida sería algo así como: ¿Y si el sistema solar es en realidad un átomo gigante y el universo es algún trozo de materia de un universo aún más grande?

El último en planteármela por e-mail ha sido asfasd fasdfasdf, así que voy a responderla antes de que alguien con un nombre aún más absurdo me la repita. Aprovecho para demostrar que esta historia es verídica y de paso recordar el e-mail al que podéis mandarme vuestras preguntas:

A parte de  la escena final de la primera película de Men In Black, supongo que este planteamiento tiene su origen en la vieja imagen que tenemos todos de un átomo, potenciada por libros de instituto, documentales e incluso este mismo blog muchas veces: un átomo aparece siempre representado como un núcleo formado por unas bolas grandes y está rodeado por otras bolas que dan vueltas a su alrededor a cierta distancia.

Pero resulta que esta imagen no es correcta. Por la cuenta que nos trae, podemos usar gatos en vez de bolas para representar las partículas subatómicas (como ya hice en esta entrada sobre el agua pesada) porque es simplemente eso, una representación de un fenómeno que no somos capaces de observar.
Seguir leyendo ¿Podría el sistema solar ser un átomo gigante?

Respuestas (LX): ¿Cuánto tiempo tardaríamos en ponernos morenos bajo la luz de la Luna?

Davilleee94 me comentó que su ciudad está sumida en el caos por culpa de las violentas confrontaciones entre dos grupos radicales de ideologías totalmente contrapuestas: los que piensan que te puedes poner moreno si te tumbas bajo la Luna llena durante un millón de años y los que no… O algo así, es una interpretación un poco libre.

El caso es que el concepto detrás de su pregunta me pareció muy interesante: ¿Nos podemos broncear bajo la luz de la Luna? En caso afirmativo, ¿Cuánto tardaríamos?

También dijo que dejó su pregunta en un comentario porque no sabía cómo contactar conmigo. Aparece en la imagen de la barra lateral derecha del blog, pero lo repito por aquí: podéis mandarme vuestras preguntas a jordipereyra@cienciadesofa.com. Por cierto, no respondo a las preguntas que tienen pinta de estar hechas para que os haga los trabajos del instituto que, aunque intentéis disimularlo, se os ve a kilómetros. “Me interesa mucho la respiración celular, ¿podrías hacer una entrada hablando de ello? Si cuando lo escribas no la quieres publicar me lo puedes mandar por aquí“. Claro, por supuesto.

En fin, para responder a la incógnita de hoy habrá que preguntarse primero: ¿Por qué nos ponemos morenos?
Seguir leyendo Respuestas (LX): ¿Cuánto tiempo tardaríamos en ponernos morenos bajo la luz de la Luna?

Respuestas (LIX): ¿Por qué son tan fuertes las hormigas? ¿Es realista Ant-Man, de Marvel?

Alberto Sedano ha visto el tráiler de una nueva película de Marvel llamada Ant-Man (os juro por los dioses nuevos y los viejos que no os estoy colando una entrada patrocinada), un superhéroe que tiene un traje que le permite reducir su tamaño al de una hormiga. La película juega con ese concepto que nos suena a todos de “una hormiga puede levantar tropecientas veces propio su peso” para dotar a Ant-Man de una fuerza sobrehumana o, mejor dicho, humana.

Viendo el panorama, a Alberto le ha surgido la siguiente duda: ¿Qué hay de verdad en eso de que si nos hiciéramos pequeños seríamos más fuertes?

Hablemos primero hablaremos de biología para responder a esta pregunta y luego ya veremos si Marvel ha dotado a Ant-Man de unos superpoderes proporcionados.

Si doblamos el tamaño de un objeto cualquiera, su masa no se duplicará como cabría esperar si no le diéramos muchas vueltas al asunto. En realidad, la masa de un objeto aumenta en la misma proporción que su volumen, lo que significa que crece siguiendo una progresión cúbica (una potencia de 3, vaya).

Si esto os suena raro, es muy fácil de ver en el caso de un cubo. Al duplicar el tamaño de cada una de sus tres dimensiones espaciales, el cubo aumentado tendrá un volumen 8 veces mayor  que el original y, por tanto, será 8 veces más masivo.

Respuestas (LVII): Desde el punto de vista evolutivo, ¿Podrían existir las sirenas?

Rubén López me ha preguntado por correo (electrónico, claro): ¿Podrían existir las sirenas? La razón de su pregunta es que no se fía un pelo de los documentales del Canal Historia o del Discovery Channel y quiere saber si tiene alguna lógica lo que decía este último en un programa sobre estos seres mitológicos.

Os voy preparando mentalmente: empezad a olvidaros del prototipo de sirenas con este aspecto. (Fuente)

Haces muy bien dudando de estos canales, Rubén. Durante los últimos años han pasado de ofrecer una programación interesante a la que recurrir a cualquier hora del día para aprender algo a ser verdaderos pozos sin fondo de sensacionalismo y programas de subastas.
Seguir leyendo Respuestas (LVII): Desde el punto de vista evolutivo, ¿Podrían existir las sirenas?

Respuestas (LVI): ¿Se puede ralentizar un rayo de luz?

David Orellana me ha enviado este vídeo por e-mail en el que aparece grabado, por primera vez, un pulso de láser propagándose por el aire.

El vídeo le ha suscitado una pregunta: ¿Sería posible variar la velocidad a la que se mueve un rayo de luz?

Y la respuesta es… Que necesitamos contexto primero.
Seguir leyendo Respuestas (LVI): ¿Se puede ralentizar un rayo de luz?

Respuestas (LV): ¿Se puede extraer oro de los océanos usando mejillones?

Ya estoy disponible de nuevo para llevar el blog con normalidad, así que retomo la sección de respuestas y os recuerdo que podéis enviar vuestras preguntas a jordipereyra@cienciadesofa.com.

Cuando empecé con Ciencia de Sofá no dedicaba tanto tiempo a las entradas como ahora. Era más una página de “curiosidades” que podía actualizar muchas veces a la semana. Cuando implanté la sección de Respuestas me gustó profundizar más en los temas y hacer entradas más largas y elaboradas… Y así he acabado. Un ejemplo de aquella época es esta entrada extremadamente corta en la que explicaba que los océanos contienen 20 millones de toneladas de oro disuelto.

Lo que sería un cubo de oro de prácticamente 101 metros de lado.

¿¡Qué… Qué dices!? Ahora vuelvo, voy a… Eeeeh… Comprar un filtro y una bomba para extraer agua… Es para un amigo…

No tan deprisa, voz cursiva, recuerda que no tienes un cuerpo físico. Y, aunque lo tuvieras, tu empresa estaría destinada a la bancarrota.
Seguir leyendo Respuestas (LV): ¿Se puede extraer oro de los océanos usando mejillones?