¿De qué color es un espejo?

Todos nos hemos preguntado alguna vez de qué color es un espejo. Tiene pinta de ser plateado, ¿no? Pero algo nos dice que ahí no acaba la historia. ¿Podríamos ver el color real con la luz apagada? No, las cosas no funcionan así.

Ante nada, vamos a aclarar una cosa: un espejo perfecto no tendría color, ya que reflejaría toda la luz incide sobre él, por lo que su color sería simplemente el del objeto reflejado.

Pero no vivimos en el mundo de las cosas perfectas, como nos intentan hacer creer los problemas de física del instituto. Ni siquiera el mejor espejo que podamos fabricar reflejará el 100% que incide sobre él y siempre habrá una pequeña cantidad que será absorbida por el material reflectante. Es una fracción tan pequeña que a efectos prácticos ni se nota, aunque puede manifestarse en algunas condiciones.

Empecemos por lo más básico: ¿Qué es color?

Seguir leyendo ¿De qué color es un espejo?

¿Qué es el agua pesada?

¿Qué líquido es exactamente igual que el agua, pero pesa un 11% más y probablemente te matará si bebes suficiente? (pista: no es ningún veneno transparente rebuscado)

Empecemos por lo básico.

La fórmula química del agua es H2O  lo que significa que una molécula está compuesta por dos átomos de hidrógeno y uno de oxígeno, formando más o menos una estructura de este estilo.

Hasta ahí bien.

Pero, a nivel atómico, no todo es tan sencillo. Cada átomo está compuesto de tres tipos de partículas: protones, neutrones y electrones. El número de ellos y la proporción de cada uno respecto a los demás, es lo que determina cómo será un elemento químico.

Los protones tienen carga positiva y los electrones negativa, mientras que los neutrones no tienen carga, o es neutra (propuesta para llamarles suizones denegada), tanto da.

Para que un átomo esté en equilibrio, tiene que tener el mismo número de cargas positivas que negativas, es decir, la misma cantidad de protones que de electrones. Lo único que diferencia un elemento de otro, de hecho, es el número de protones que contiene su núcleo.

A primera vista puede parecer que los neutrones carecen de utilidad. Tal vez no deberían existir. Tal vez deberíamos juntarlos todos y prenderles fuego, pero tampoco daría tiempo porque un neutrón aislado apenas dura 15 minutos antes de descomponerse en otras partículas más pequeñas. Pero, bueno, esto no viene el caso.

El agua, con todos sus componentes primarios y siguiendo el esquema de antes, quedaría así (me niego a hacer más círculos con el Paint, así que usaré gatos).

Además de ser necesarios para mantener los núcleos atómicos estables, los neutrones son la causa por la que se forman isótopos de todos los elementos.

Como ya hemos dicho, un elemento químico se caracteriza por el número de protones contiene en el núcleo, eso es inmutable. Pero sí podemos añadir o quitar neutrones de un átomo y seguirá siendo el mismo elemento, aunque sus propiedades cambiarán ligeramente. Es entonces cuando hablamos de isótopos.

Todos hemos oído hablar, por ejemplo, del carbono-14. El carbono tiene 6 protones, y esto es, ha sido y será así para cualquier átomo de carbono en cualquier parte del universo. El “14” que le sigue no es más que el número de partículas que contiene su núcleo (6 protones y 8 neutrones). De la misma manera, existen el carbono 12 y el 13, con seis y siete neutrones. En este caso, decimos que el carbono tiene 3 isótopos estables (porque en realidad existen desde el carbono-8 hasta el carbono-22, pero ninguno de ellos dura demasiado antes de desintegrarse).

Volviendo al agua, los átomos del hidrógeno de los que está constituida son los más simples y abundantes en el universo y se componen de un protón y un electrón. A esta configuración se le llama también protio.

Pero, pese a que esta configuración sea la más común (el 99,98% de la masa total de hidrógeno corresponde a protio), el hidrógeno tiene dos isótopos más: el deuterio y el tritio.

El deuterio tiene en su núcleo un protón y un neutrón, mientras que el tritio tiene un protón y dos neutrones. El tritio nos va a dar bastante igual, ya que es radiactivo y se usa sólo en la industria del armamento nuclear.

Volviendo al deuterio.

Pese a tener una partícula compañera en su núcleo, sus propiedades no varían mucho respecto al hidrógeno normal. La diferencia más notable es que pesa el doble que el hidrógeno corriente, ya que el centro ya no está ocupado por una sola partícula, sino por dos.

El deuterio no tiene ningún problema en enlazarse con oxígeno para formar moléculas de D2O  igual que el hidrógeno común forma H2O  El D2tiene el mismo aspecto que el agua corriente, pero una masa un 11% mayor que ésta. De ahí que nos refiramos a ello como agua pesada.

Un efecto curioso que produce este hecho, es que el hielo de agua pesada se hunde en agua normal en estado líquido, como aparece en este vídeo a partir del minuto 6:02.

El color anaranjado (o rosáceo, o lo que cada uno vea) del hielo se debe a que han mezclado una pequeña cantidad de tinte con el agua pesada para poder distinguir bien el experimento.

Luego, ocurre algo curioso: a medida que se funde, el hielo de agua pesada empieza a flotar. El señor del pelo afro canoso dice que esto es porque el hielo pesado se funde a una temperatura ligeramente menor que el agua corriente, así que ésta se vuelve a congelar sobre la superficie del hielo, bajando su densidad total. Pero hay algo que no menciona (y varios comentarios de Youtube parecen concordar conmigo): también contribuye a este fenómeno el hecho de que, al fundirse el hielo, el agua pesada se mezcla con el agua corriente y aumenta la densidad de la mezcla.

Pero bueno, sigamos con el tema que nos concierne a todos.

No se sabe mucho sobre los efectos nocivos sobre la salud del agua pesada.

Teniendo en cuenta que, de manera natural, uno de cada 7.000 átomos de hidrógeno es deuterio, y que el cuerpo humano cuenta con un 75% de agua, lo más probable es que ya tengas de 6 a 8 gramos de agua pesada corriendo por tus venas.

En esas cantidades no debe ser peligroso, porque entonces estaríamos todos muertos.

Lo que sí sabemos es que los enlaces que se forman entre el deuterio y el oxígeno en el D2O son un poco más fuertes que los del H2O.

También sabemos que muchos procesos químicos que nos mantienen vivos requieren de la descomposición del agua en hidrógeno y oxígeno. Al necesitar más energía para romper las moléculas de D2O, estos procesos podrían ralentizarse o detenerse por completo, matándonos de alguna manera.

Oye, pero no me ha quedado una cosa clara del todo… Si el deuterio pesa el doble que el hidrógeno, ¿Cómo es que el agua pesada sólo pesa un 11% más que el agua normal? ¿No debería pesar también el doble?

El hidrógeno es sólo uno de los componentes del agua. Una molécula de H2O consiste en dos átomos de hidrógeno y uno de oxígeno, mucho más pesado. Como protones y neutrones tienen masas muy parecidas, y los electrones pesan tan poco que se pueden despreciar, tomemos la masa de una partícula como 1.

El oxígeno tiene en su núcleo 8 protones y 8 neutrones, lo que le da una masa de 16 que, sumada a la masa de los dos átomos de hidrógeno, nos da una masa total de 18 para la molécula de agua.

En el caso del deuterio, el número total de partículas en la molécula ascendería a 20 al haber dos neutrones nuevos en el sistema. Podemos compararlo (más o menos) aquí.

Por tanto el agua pesada (con 20 partículas) será un 11.11% más masiva que el agua corriente (con 18 partículas). Locos del 11:11, manifestaos.

Y ahora, un breve mensaje publicitario.

Ciencia de Sofá tiene un libro nuevo, “Las 4 fuerzas que rigen el universo“, donde hablo sobre cómo las cuatro fuerzas fundamentales dan forma a nuestro universo, su descubrimiento y su efecto sobre nuestras vidas. Por otro lado, el libro “viejo” (“El universo en una taza de café“) va por la tercera edición y ahora vuelvo a ofrecer suscripciones a la revista de National Geographic así que, si os interesa alguna de estas propuestas, podéis acceder a una entrada donde las explico con más detalle haciendo click sobre la siguiente imagen 🙂

Especial Química (II)

Tras el éxito absolutamente abrumador del especial de química (I), vamos con otras tres reacciones químicas que van a dejaros patidifusos.

En primer lugar, veremos una pastilla efervescente al reaccionar con agua…

¡Vaya! ¡SIENTO LA ADRENALINA CORRER POR MIS VENAS! ¡Joder! ¿Para esto me molesto en entrar en tu puñetero blog?

… con agua en condiciones de gravedad cero (de microgravedad, en realidad, pero visualmente puede considerarse lo mismo en este caso). 


A los astronautas de la Estación Espacial Internacional (ISS, por las siglas en inglés) les pagan por hacer el chorra donde ningún ser humano ha hecho el chorra antes. En este caso, mientras orbitaban alrededor de la Tierra, se les ocurrió suspender en el aire una gota de agua de 5 centímetros de diámetro e introducir en ella una pastilla de Alka-Seltzer, un medicamento antiácido efervescente.



Recordemos que un fluido, dejado a su voluntad en condiciones de gravedad cero, tiende a formar esferas en el aire debido al efecto de la tensión superficial, así que nuestros cerebros acostumbrados a ver masas de agua contenidas en recipientes ni siquiera pueden anticipar lo que va a pasar a continuación.


La burbuja de agua succiona la pastilla de la mano del astronauta. Esto se debe a que la reacción empieza de manera inmediata, se libera gas en el interior de la esfera y la presión del fluido que compone la gota de agua baja drásticamente al ser desplazada por todo el gas.

Después de ser introducida por completo en la gota, el gas que emite la pastilla tiende a desplazarse hacia la superficie más cercana, donde las burbujas empiezan a acumularse. Las burbujas más pequeñas se fusionan para formar otras más grandes y, de tanto en tanto, alguna explota, deformando momentáneamente todo el sistema. Cuando la pastilla se ha disuelto, la estructura que se obtiene es siempre, más o menos, la misma: dos grandes burbujas de aire estables que mantienen deformada la gota de agua y que no explotan a menos que alguien las reviente.

Sólo por este vídeo han merecido la pena los 100 mil millones de dólares invertidos* en la ISS.

SIGUIENTE.

La polimerización explosiva de la nitroanilina. 


Como enseñan en el vídeo completo, esta es la reacción que se produce al calentar una mezcla de nitroanilina y ácido sulfúrico.

La nitroalinina es un compuesto de fórmula química C6H6N2O2 y usos variados: desde tintes y aditivos para carburantes a inhibidores de la corrosión y medicinas. Es tóxico, aunque sólo un poco: un ser humano estándar necesitaría,  administrada por vía oral, una dosis de 750 miligramos por cada kilo de masa corporal para tener un 50% de posibilidades de morir por su culpa. En total se necesitarían 60 gramos de polvo amarillento, por lo que más os vale buscaros una víctima a la que le guste muchísimo el curry.

La polimerización es el proceso mediante el cual las moléculas de un compuesto (normalmente líquido) se unen para formar largas cadenas enmarañadas y dar lugar a uno nuevo (normalmente sólido). Así se forman, por ejemplo, todos los plásticos de los que estás rodeado.

Volviendo a la animación y a la nitroalinina, echemos un vistazo a la composición del producto químico: C6H6N2O2. Esto significa que una molécula del material se compone de 6 átomos de carbono, otros 6 de hidrógeno, y 2 de nitrógeno y oxígeno, respectivamente. Esto es: un elemento sólido (carbono) , ligado a tres elementos en estado gaseoso, siempre y cuando se encuentren en condiciones de presión y temperatura normales, como las del vídeo.

Al reaccionar con el ácido sulfúrico, las moléculas de gas se separan del carbono y se recombinan con  el ácido y el aire para formar un humo espeso que se disipa en seguida. El carbono solitario que ha quedado atrás se deposita y es el principal componente de la columna negra y esponjosa al tacto que se forma durante la reacción. 


Y, ahora, vamos a ver lo que pasa al mezclar bromo y aluminio.



Esta reacción no tiene mucho secreto, solo es bastante espectacular.

Lo único que hay que explicar es que se libera una gran cantidad de calor mientras el bromo y el aluminio se combinan. Es una reacción exotérmica, lo que significa que produce calor o luz durante el proceso, o ambas en este caso. El efecto contrario sería una reacción endotérmica, que absorbe calor al producirse, pero eso suele ser bastante menos emocionante.

*Si entráis en el link, veréis que en el artículo aparece “100 billion”. Los americanos usan la palabra “billion” para referirse a nuestros “miles de millones”. Cada dos por tres aparecen errores en publicaciones supuestamente serias hablando de billones de dólares. Si no lo sabíais, y los números de algún artículo no os cuadran, tenedlo en cuenta al esparcir la historia.

El problema del cumpleaños

Imagina que estás con 9 amigos. No hay gemelos, ni siameses, ni es año bisiesto, para no complicar más las cosas.

¿Qué probabilidad hay de que dos de vosotros cumpláis años el mismo día?
Hay 365 días en un año, así que parece seguro asumir que es bastante complicado que dos personas cumplan años el mismo día, a menos que nos encontremos en un grupo muy numeroso de personas.
La estadística nos dice otra cosa. 

Basta un grupo de 23 personas para que la probabilidad de que dos de ellas hayan nacido el mismo día del año sea del 50%, y se llega al 99% con sólo 57 personas.
Lo podemos probar contigo y tu grupo de amigos, que sólo sois 10 y se calcula rápido. Este problema tiene dos posibles opciones: dos personas cumplen años el mismo día o no lo hacen.

Lo que calcularemos será la probabilidad de que dos personas NO cumplan años el mismo día, que es mucho más simple. Como la probabilidad de que dos personas hayan nacido el mismo día y la probabilidad de que no, sumadas, tienen que cubrir todos los escenarios (el 100%), podremos calcular la probabilidad contraria con una simple resta.

Digamos que tú has nacido el 3 de junio, que es sólo uno de los 365 días del año. La probabilidad de que uno de tus compañeros no haya nacido el 3 de junio es de 364/365. Es decir, puede haber nacido en cualquiera de los otros 364 días de los 365 posibles, mientras no sea el 3 de junio.
Para que un tercer compañero tampoco cumpla años el mismo día que tú o que tu primer amigo, tiene que haber nacido en una fecha que no sea la de ninguno de vosotros. Por tanto, puede haber nacido en cualquiera del resto de los 363 días de los 365 que tiene el año. 
Aplicando esta lógica a las diez personas, podemos calcular la probabilidad de que dos personas no hayan nacido el mismo día como:
Probabilidad de no compartir fecha de cumpleaños = (365/365)*(364/365)*(363/365)*(362/365)*(361/365)*(360/365)*(359/365)*(358/365)*(357/365)*(356/365)*100 = 88,30%
Por tanto, de un posible total del 100%, la probabilidad de que dos personas. de un grupo de 10, cumplan años el mismo día es del 11,70%.

A partir de un grupo de 57, la probabilidad supera el 99% y sólo añade decimales hasta llegar a 366, cuando la probabilidad de que dos de ellas hayan nacido el mismo día llega al 100%, porque ya hay una persona más que días disponibles y por fuerza tiene que repetir alguien.

En el siguiente gráfico aparecen representadas las probabilidades para hasta 100 personas. 

Crédito: wikipedia.com
Y en la siguiente tabla, la misma información de manera más palpable: n representa número de integrantes en el grupo y p(n) es la probabilidad de que dos cumplan años el mismo día.

Para quien no esté familiarizado con términos como 1.45×10−155, este número es lo mismo que 1.45 multiplicado por 0,0000… (155 ceros en total) …0001. 

¿Cómo se forman los rayos?

Todos hemos sido testigos de alguna descarga eléctrica de millones de voltios azotando la tierra. Algunos incluso hemos sido lo suficientemente afortunados para verlas prender fuego a cosas. Pero, si ya cuesta un rato cargar una interna manual que funciona con una cantidad ridícula de electricidad, ¿De dónde sale toda esa corriente que cae del cielo?
La ciencia que estudia los rayos se llama fulminología, que a nuestro parecer ostenta el récord al mejor nombre para una disciplina científica.
Para entender por qué se producen los rayos, veamos primero cómo funciona una corriente de agua.
¿Pero qué esta basura? ¿Me estás tomando el pelo?

No, aún no. La electricidad se comporta de manera parecida a un sistema fluvial. 

Por un lado, tenemos una reserva de agua que, por el mero hecho de estar por encima del nivel del mar, acumula un tipo de energía llamada energía potencial. Todo lo que se encuentra a cierta altura tiene energía potencial, ya sea una masa de agua o una persona en la terraza de un segundo piso, pero ésta no se manifestará hasta que se abra una vía de escape por donde disiparla: saltando por el balcón, en el caso de la terraza, o abriendo un agujero por dónde pueda salir el agua, en el caso de un lago. Será entonces cuando el sistema evolucione hasta alcanzar un estado de equilibrio.
“Estoy muy contento de haber 
quedado en equilibrio con la acera”
De la misma manera, para que fluya electricidad por un sistema necesitamos un bloque de un material que tenga muchísimos electrones y otro al que le falten. Los electrones tienden siempre a colocarse en el estado en el que menos energía ocupen, es decir, allá donde haya un hueco vacío donde meterse. Si tenemos dos materiales, uno al que le sobran electrones y otro al que le faltan, se dice entonces que, entre los dos materiales, hay cierto potencial eléctrico.
Pero, igual que la energía potencial no puede manifestarse hasta que le abrimos una vía de escape, este potencial eléctrico no tendrá ningún efecto hasta que unamos los dos bloques con un material por el que los electrones sean capaces de desplazarse con más o menos facilidad. Una vez unidos, éstos sacarán su lado humano y automáticamente huirán del bloque donde están todos aglomerados, buscando espacio libre para escapar de la multitud.
Los electrones son como nosotros en este aspecto y, cuando todo el mundo está cómodo en su sitio, nadie quiere volver a moverse. O sea, que lo que conocemos como corriente eléctrica no son más que carreras de electrones a través de un material conductor y, cuando los electrones dejan de pasar por el cable, se nos acaba el chollo.
En el siguiente dibujo, vemos lo que pasa en realidad cuando se nos acababan las pilas de la Game Boy: realmente no se “acaba” nada, sólo que las pilas han llegado al equilibrio.

¿Entonces qué tenía que ver todo esto con el ejemplo del puñetero río`?
Al hablar de electricidad, es inevitable que todos hayamos escuchado los términos voltaje, intensidad o resistencia. Si os pasa como a nosotros, los encontraréis conceptos difíciles de visualizar porque no tenemos ninguna referencia física para imaginarlos.
El siguiente ejemplo, ayuda bastante.
Al fin y al cabo, una corriente eléctrica y una de agua tienen el mismo fundamento: son un montón de partículas fluyendo por un tubo. En realidad, en el caso del agua son moléculas y en el de la electricidad, electrones, pero ambas siguen siendo puntos microscópicos en movimiento que no podemos ver a simple vista. 
Explicamos cada parte del dibujo.
1. Un flujo de agua circula por un tubo. Está claro que, cuanto más ancho sea el tubo, más agua podrá pasar al mismo tiempo. De la misma manera, la intensidad es la magnitud eléctrica que determina la cantidad de electrones que están pasando por la sección de un cable o, lo que es lo mismo, el equivalente al caudal de un río.
2. Luego está la llamada altura de columna, que viene a expresar la fuerza con la que el chorro de agua está siendo a empujado. Suponiendo un tubo situado en la base de un depósito, hay que tener en cuenta que toda la masa de agua que esté por encima del tubo estará presionando hacia abajo por efecto de la gravedad. Cuanto más alto sea el depósito, más masa habrá por encima de la salida empujando hacia abajo, por lo que el chorro de agua saldrá a más velocidad. Esto, cambiando moléculas de agua por electrones, sería el equivalente al voltaje.
3. La resistencia no es una propiedad propia de la corriente eléctrica, si no del material por el que está circulando. Básicamente, define la facilidad con la que pueden desplazarse los electrones por su interior. El cobre, por ejemplo, es muy buen conductor de la electricidad, por lo que ofrece poca resistencia al paso de corriente eléctrica. En términos hidráulicos, esto equivaldría a la rugosidad del tubo por el que pasa el agua: a más rugosidad, más energía perderá el flujo de agua al chocar contra las imperfecciones que cubren las superficie interior del tubo y más le costará desplazarse.
TOTAL.
Ahora que ya tenemos las bases necesarias, volvamos a los rayos. 
Cuando muchas nubes se acumulan en una zona, las partículas de agua que las componen, en conjunto, tienden a adoptar una carga negativa. No se sabe con certeza a qué se debe esto, unos dicen que por la polarización de pequeños cristales de hielo por efecto del campo magnético terrestre, otros argumentan que tiene que ver con la formación de aguanieve de densidades dispares en las diferentes capas de la nube. Para el caso que nos ocupa, a nosotros nos va a dar completamente igual.
La cuestión es que las nubes empiezan a cargarse negativamente (pierden electrones). Por suerte o por desgracia, el suelo tiene carga positiva. No estamos seguros de por qué, y no hemos conseguido encontrar una explicación por internet, pero probablemente tiene que ver con que el suelo está lleno de metales, a los que suelen sobrarles electrones por todos lados.
Llegados a este punto, lo único que separa a los electrones de su felicidad es todo el aire que hay entre  las nubes y el suelo
Pero el aire es un pésimo conductor de la electricidad… ¿No?
Que una cosa sea mala conductora de la electricidad no quiere decir que no conduzca la electricidad en absoluto. Sólo significa que una corriente que pretenda atravesarla tendrá que tener una tensión y una intensidad tremendas para compensar toda la energía que perderá durante el camino.
O sea que, hasta que la nube está muy cargada negativamente (le faltan muchísimos electrones), los electrones del suelo no acumulan la rabia suficiente para correr a rellenar todo ese montón de huecos en los que alojarse, formando lo que llamamos un rayo.  
El flujo eléctrico resultante suele tener un voltaje de 10 a 120 millones de voltios y una intensidad unos 30.000 amperios. En comparación, 10 miliamperios (0.0001 amperios)  pueden ser suficientes para detener un corazón humano. El voltaje no influye tanto a la hora de matar a una persona ya que, al fin y al cabo, esta magnitud tan sólo determina la velocidad con la que la corriente eléctrica se desplaza por el cuerpo. Lo realmente peligroso es la cantidad de electrones que nos atraviesan
Demasiados párrafos sin contenido visual. Procedo a incluir un poco para hacerlo más interesante.
Justo en el momento anterior a que los electrones empiecen a ascender del suelo hacia la nube, el aire se ioniza. Esto quiere decir que las moléculas de gas se separan en iones positivos y electrones, de manera que estos electrones libres ahora pueden moverse como les dé la gana y son capaces de abrir un “camino” desde la nube hasta el suelo. En el principio de este vídeo puede observarse que es un fenómeno más complejo de lo que podría parecer a primera vista.

El primer “tentáculo” en llegar al suelo marca el camino
que seguirá el rayo.

Lo curioso, en este caso, es que el aire empieza a ionizarse en todas direcciones, ramificándose en pequeños destellos que van abriéndose camino por donde les sale de las narices, buscando la carga positiva más cercana. Cuando una de estas ramas alcanza una carga positiva (en este caso, el suelo), conecta la nube con el suelo mediante la autopista eléctrica, y es entonces cuando todos los electrones encuentran vía libre para ascender a sus ansiados huecos libres en el cielo a unos 440.000 m/s.
Y, al fin, hemos entendido cómo funciona, más o menos, un rayo.
¡Eh, sinvergüenza, aquí no has dicho de dónde vienen los truenos que acompañan a los rayos!

Tienes razón. Por suerte, es rápido de explicar.

Como hemos dicho, el aire es muy mal conductor de la electricidad. Eso significa que cualquier corriente eléctrica que intente atravesar una masa de aire va a perder muchísima energía por el camino, y esta energía se disipará en forma de calor.
La potentísima corriente eléctrica de un rayo genera tanto calor a medida que atraviesan el aire, que éste se calienta muchísimo en un espacio muy corto de tiempo. Hablamos de temperaturas que pueden alcanzar los 28.000ºC, casi cinco veces la temperatura de la superficie del sol. Al calentarse, el aire tiende a expandirse por lo que, por la regla de tres, al calentarse a 28.000 grados, se expandirá a velocidades inimaginables. 
Esa expansión repentina del aire es que llega a nuestros oídos y nuestro cerebro interpreta como un sonido atronador
Vale, GRACIAS.

Y, a todo esto, caen como 50 rayos por segundo en la superficie de la tierra. Que cayera uno en el Vaticano el otro día tras la dimisión del Papa, no es más que una curiosidad estadística. Así que BASTA YA.

¿Cuánto oro contienen los océanos?

El agua del mar no sólo contiene sal. Tiene disueltas pequeñísimas cantidades de casi todos los elementos, entre ellos el oro: alrededor de 13 milmillonésimas de gramo de oro por cada litro de agua de mar.

Se estima que el volumen de agua de los océanos, en conjunto, es de unos mil trescientos sesenta y ocho millones (1.368.000.000) de kilómetros cúbicos. Con la cantidad de oro por litro de agua que hemos mencionado, podemos calcular que hay 13 kilogramos de oro por kilómetro cúbico de agua por lo que, en total, en los océanos de todo el mundo hay unas 20 millones de toneladas de oro disuelto.

Fuentes:
http://oceanservice.noaa.gov/facts/gold.html
http://oceanservice.noaa.gov/facts/oceanwater.html

Asteroides y diamantes

Como ya sabréis, un meteorito ha caído sobre Rusia y me ha recordado una historia que leí hace un tiempo. 
Pero primero, hablemos de actualidad. 
Esta madrugada, un meteorito ha entrado en la atmósfera y ha provocado daños las poblaciones rusas  de Cheliabinsk, Sverdlovs y Tyumen

Fuente: BBC.
Casi un millar de personas han resultado heridas, pero no a causa de una lluvia de roca fundida al estilo Hollywood, sino porque el meteorito ha explotado en el aire y la onda expansiva generada ha reventado todos los cristales que ha encontrado en su camino, que luego han caído a la calle, concretamente sobre las cabezas de los que paseaban tranquilamente bajo las ventanas.



Cómo no, he visto que en las redes sociales la gente empezaba a sacar sus teorías (probablemente, ni siquiera eran propias).

Hay quién dice que el meteorito fue interceptado por el sistema de defensa anti-misiles ruso, cosa  que dudo, dado que esta mole de 10 toneladas se movía a 54.000 km/h. Un misil intercontinental tiene suerte si pasa de 2.500 km/h. 

No soy un experto, pero yo lo descartaría.

Otros argumentan que esto no era más que la carta de presentación de un asteroide más grande, 2012 DA14 (que, por cierto, fue descubierto por un equipo amateur español), que pasará muy cerca de la Tierra esta noche, y que ahora viene le gordo. Dos cosas:

– El asteroide viene en dirección opuesta a la que ha caído el meteorito ruso.
– La órbita del asteroide lleva tiempo siguiéndose y se conoce muy bien. Todo indica a que no va a impactar contra nosotros.
EN EL HIPOTÉTICO CASO, que no es el nuestro, de que impactara, es un cuerpo muy pequeño. Mide unos 50 metros de diámetro. Me suena que hace algunos años ya pasó algo parecido con uno más grande, y no hizo más que desintegrarse en la atmósfera. Cuando encuentre algo lo actualizaré, pero ahora tengo prisa porque me van a cerrar el supermercado.

Así que nadie se preocupe, podemos posponer el sacrificio de Bruce Willis unos años más.
Si queréis seguir en directo el paso del asteroide, la NASA lo ha montado para que podáis verlo aquí.

Y la noticia de la que hablaba al principio.

Hace 35 millones de años, un asteroide de verdad impactó al noreste de lo que ahora es Rusia (a saber en aquella época cómo estaban distribuidos los continentes) y el impacto generó un cráter de casi 100 kilómetros de diámetro al que, millones de años después, los rusos llamaron Popigai. Muy mal.

Normalmente, las historias de asteroides terminan así y volvemos a Facebook a ver si durante el minuto que llevamos leyendo ha pasado algo importante. Pero esta es diferente.

Al parecer, el meteorito se estrelló contra un yacimiento de grafito, por lo que el calor y la presión desatados durante el impacto convirtieron grandes cantidades de carbono en diamante. En otra entrada ya hablamos de las diferentes estructuras que puede adoptar el carbono

En fin, que esos diamantes no se han movido del sitio y han permanecido en el mismo lugar durante todos esos millones de años, hasta que un grupo de geólogos rusos lo descubrió en los años 70 y lo archivaron automáticamente como secreto de estado. Recientemente, estos archivos han salido a la luz y Rusia no hace más que chulear porque dicen que pueden abastecer ellos solitos el mercado de diamantes durante 3.000 años.

Teniendo en cuenta que un quilate (o 200 miligramos, hablamos del tema aquí) suele valer alrededor de 2.000$, y teniendo en cuenta que los cálculos apuntan a que en el cráter hay varios billones de quilates enterrados, podemos imaginar cómo crecerá el PIB de Rusia cuando empiece a explotarlo en serio.

Aunque deberían habérselo callado, porque encontrar unas reservas tan grandes no hará más que abaratar los diamantes, ¿no?

Lo siento, tampoco soy economista.

Especial Mercurio

Iba a escribir un especial sobre química, pero con el primer tema que iba a tratar me estaba alargando tanto que he decidido convertirlo en un capítulo sobre uno de mis elementos favoritos de la tabla periódica: el mercurio.

Este elemento ha alimentado la curiosidad del ser humano desde su descubrimiento. Y, hablando de alimentación, la curiosidad humana no es lo único que se ha nutrido de las interesantes propiedades de este elemento: el emperador chino Qin Shi Huang murió en el año 210 a.C. porque tomaba regularmente un brebaje de mercurio que había mandado desarrollar a sus alquimistas, pensando que esta sustancia le otorgaría la inmortalidad.

Si es bonito, es sano“, Qin Shi Huang emperador chino.

El hecho de que sea el único metal que se encuentra en estado líquido a temperatura ambiente (aunque el galio también puede estarlo, si vives en un lugar muy caluroso) es el motivo por el que su símbolo químico es Hg, en alusión a su nombre latín hidrargium, que viene de hidros, “agua” y argentum, “plata”.

Otra cosa que sorprende de este elemento es su densidad, que ronda los 13.6 kilogramos por cada litro de material, el equivalente a sufrir una luxación de muñeca al intentar levantar un botellín de Font Vella lleno de este elemento.

De hecho, como las cosas menos densas flotan sobre las que lo son más, casi todos los elementos que nos rodean en nuestro día a día pueden flotar sobe el mercurio. Por ejemplo, aquí tenéis a un tipo lanzando una bala de cañón de hierro (densidad, 7.87 kg/litro) en una piscina de mercurio para la BBC.

Estaría bien que en el vídeo hubieran enseñado otros materiales más densos que el mercurio que sí se hunden en este metal líquido, como por ejemplo el uranio (18.95 kg/l), el oro (19.3 kg/l), el osmio (22.16 kg/l). No me creo que en la BBC no puedan permitirse comprar un lingotillo de oro para hacer una demostración rápida pero, de todos modos, en su defensa debo decir que la prueba tampoco sería recomendable, ya que el oro tendería a amalgamarse con el mercurio, liberando una gran cantidad de calor y…

¡Eh, para el carro con las palabras extrañas!

¡Calma, voz cursiva, ahora lo explico!

Una amalgama es una mezcla entre el mercurio y otro metal. Básicamente, cuando juntas cualquier metal (que no sea hierro, tungsteno, platino o tántalo) con el con mercurio, el primero se disuelve en él y ambos pasan a formar un sólo compuesto.

Amalgama de mercurio y oro. Fuente: aquí.

De hecho, el mercurio se usó durante mucho tiempo en la minería porque se amalgama con las pequeñas partículas de oro contenidas entre la arena y las rocas. Esto facilita mucho la extracción de oro porque puedes meter todo tu material en un recipiente con mercurio, darle un meneo para que entre en contacto con la mayor cantidad de oro posible y la disuelva, recuperar la amalgama líquida y disolver el mercurio que contiene con un ácido o evaporarlo para que sólo quede el oro atrás. Pero, claro, el uso del mercurio en la minería se tuvo que prohibir cuando se descubrió que es un metal extremadamente tóxico y que los residuos desataban el caos en los ecosistemas cercanos (y en los cuerpos de los propios mineros).

Y, sabiendo esto, tal vez os alarme conocer el siguiente dato: las amalgamas de plata-mercurio, por ejemplo, se usan en implantes dentales. Pero ojo, que no tenéis por qué preocuparos porque estos implantes no son tóxicos, ya que la mezcla forma un material sólido muy resistente a los ácidos que nos llevamos a la boca y al estrés mecánico de la masticación. Por tanto, el mercurio no tiene manera de salir del empaste y entrar en nuestro cuerpo cuando se encuentra en este estado.

En cualquier caso, no hace falta lanzar un metal dentro de una piscina de mercurio para que la reacción que produce una amalgama tenga lugar, ya que puede atacar a otros metales incluso en pequeñas cantidades, como demuestra el siguiente vídeo:

En condiciones normales, el oxígeno de la atmósfera reacciona con los átomos de la superficie del aluminio formando una fina capa protectora de óxido de aluminio impermeable que impide que más oxígeno penetre en el interior de la pieza y la debilite desde dentro.

Pero el mercurio es más valiente que el oxígeno y sí que es capaz de colarse a través de esa capa de óxido de aluminio, impidiendo que se forme una barrera continua que proteja el resto del material contra el oxígeno y permitiendo que el oxígeno penetre en la estructura. Esto forma nuevas capas de óxido que a la vez son atravesadas por el mercurio y el oxígeno, formando más capas… Y al final acaba todo lleno de grietas y la estructura hecha un desastre.

De hecho, el mercurio es tan efectivo rompiendo la barrera natural del aluminio que el tipo de este artículo de POPSCI.com  dice que, durante la II Guerra Mundial, los aliados aprovechaban este fenómeno e infiltraban unidades militares en territorio alemán para untar sus aviones con mercurio y dejaban a los nazis con el culo torcido al ver que sus aeronaves caían del cielo sin explicación alguna.

Moraleja: lo único que impide que un avión se estrelle contra el suelo es una capa microscópica de óxido de aluminio.

Y, después de todo esto, aquí tenéis mis publicidades que podéis ignorar perfectamente.

Ciencia de Sofá tiene un libro nuevo, “Las 4 fuerzas que rigen el universo“. En él hablo sobre cómo las cuatro fuerzas fundamentales dan forma a nuestro universo, su descubrimiento y su efecto sobre nuestras vidas. Por otro lado, el libro “viejo” (“El universo en una taza de café“) va por la tercera edición y ahora vuelvo a ofrecer suscripciones a la revista de National Geographic así que, si os interesa alguna de estas propuestas, podéis acceder a una entrada donde las explico con más detalle haciendo click sobre la siguiente imagen 🙂

Hidrofobia

Además de ser una excusa barata para la gente a la que no le gusta demasiado ducharse (es broma, en realidad es un síntoma mortal que padecen los individuos afectados por la rabia), una sustancia hidrófoba es aquella que repele el agua o que no es capaz de mezclarse con ella.
Hoy en día, el uso de la nanotecnología ha permitido llevar el fenómeno al extremo, con resultados que desafían nuestra percepción de la realidad.



El compuesto puede aplicarse también directamente sobre la piel, para conseguir el siguiente efecto.

Pero este fenómeno no se limita a sprays aplicables sobre otras superficies. Existen sustancias sólidas que manifiestan hidrofobia al ser cubiertas por una capa de pequeñas partículas de sílice y sometidas a un baño de vapor de trimetilsilano. El resultado es esta arena hidrófoba, por ejemplo.

Cuando entra en contacto con el agua, el recubrimiento de cada grano tiende a adherirse con el de sus vecinos más cercanos, sellando cualquier hueco por donde pueda colarse el líquido. Pero, ¿Por qué forma churros? Responderemos a eso con un churro de dibujo.

Al depositar la arena sobre una masa de agua, los granos de la capa que entra en contacto directo con la superficie líquida se pegan entre sí, impidiendo la difusión del líquido a capas superiores. De esta manera, el montón de arena quedará flotando sobre una especie de balsa compacta.
Como el centro de nuestro montículo de arena pesa más que el exterior, por el mero hecho de tener una pila más alta de material, la estructura tenderá a hundirse por en medio. Pero, como todo el tinglado está sustentado por una capa compacta e impermeable, la arena no puede atravesarla y hundirse en el agua. En lugar de eso, deforma la balsa impermeable, dándole forma de cúpula inversa.
Si, llegados a este punto, continuamos añadiendo masa (en el gif se deja caer un flujo constante de arena), el peso en el centro del montículo no dejará de aumentar,  por lo que la deformación inicial seguirá acentuándose. La presión del agua, que comprime la masa bajo el agua desde todas las direcciones con la misma fuerza, obliga a la protuberancia a tomar la forma que minimice en mayor grado la superficie de contacto: un cilindro.
Total, que al sacar la arena del agua los granos de arena se separan y, como el agua no había podido colarse en su interior, aparece totalmente seca, en contra de toda intuición.
Ahora sólo falta esperar impacientes el momento en que algún loco resuelva, dejando pruebas documentales, la siguiente ecuación:

El minigolf del Diablo

Esta figura geométrica surgió de la mente de un tal D. Castro, como la respuesta a un interrogante planteado en la década de 1950 por Ernst (los alemanes sólo usan las vocales en caso de emergencia) Strauss: ¿Existe una habitación que, cubierta de espejos, no pueda ser iluminada por una sola vela?



El primero en proponer un contraejemplo que diera una respuesta contundente a esta pregunta fue George Tokarsky en 1995, con una figura geométrica de 26 lados que demostraba que sí, que existen figuras que cumplen esa condición.

Más tarde, el tal D. Castro (de quien asumo que no soy capaz de encontrar el nombre, ya que esto es lo máximo que me he acercado) propuso la figura de 24 lados que aparece en esta entrada.

Si se colocara una vela en el punto A, un observador situado en el punto B no podría ver el reflejo de la llama en ninguno de los espejos que le rodean. Supongo que, por eso, esta figura recibe el sobrenombre de “el agujero negro”, un cuerpo celeste que posee una fuerza gravitatoria tan poderosa que ni la luz puede escapar de ella (aquí faltan matices que espero tratar en entradas futuras).

Con un enfoque más simplista, pasándonos las leyes de la física por el forro, suponemos que:

– Tenemos un palo de golf indestructible.
– Tenemos una bola indestructible.
– No hay aire en la habitación, así que la bola no pierde energía por rozamiento.
– El suelo está hecho de un material mágico que no genera fricción, por el mismo motivo.
– Lanzamos la bola desde el punto A con una fuerza casi infinita.
– Los espejos son indestructibles y transmiten toda la energía del rebote de nuevo a la bola, para evitar que se rompan y que caiga sobre nuestros hombros una eternidad de mala suerte.

“No os preocupéis, lo tengo todo bajo control”

Entonces, dando por hecho que desaparecemos como nenazas cuando la pelota empieza a volar a nuestro alrededor a velocidades cercanas a la de luz, ya puede rebotar la bola para siempre, que nunca va a llegar al punto B.

A grandes rasgos, supongo que algo así quería decir el que acuñó el término “el minigolf del Diablo”.