Carlos Morro me envió un correo electrónico (a jordipereyra@cienciadesofa.com) preguntando sobre la supernova que dio lugar al sistema solar. ¿Qué se sabe sobre esa estrella que reventó y posibilitó nuestra existencia? ¿Tenía su propio sistema planetario? ¿A qué distancia ocurrió? ¿Y dónde están ahora los restos de su explosión? (esta última la he añadido yo)
El tema me pareció interesante pero, antes de empezar, habrá que aclarar cómo se formó nuestro sistema solar para asegurarnos de que todos partimos de la misma base que Morro.
El proceso de formación de las estrellas es simple: empieza con una nube de gas (compuesta principalmente por hidrógeno y helio) que flota por el espacio y, por un motivo u otro, aparecen en ella regiones más densas que comienzan a atraer material a su alrededor gracias a su mayor fuerza gravitatoria. A medida que estas bolas de gas se vuelven cada vez más grandes y densas, la presión sobre su núcleo va creciendo hasta que, cuando han acumulado la masa suficiente, aumenta tanto que desata una cadena de reacciones de fusión nuclear. Estas reacciones disparan millones de grados la temperatura del núcleo y el calor termina repartiéndose por todo el amasijo de gas, convirtiéndolo en una bola de plasma incandescente o, lo que es lo mismo, una estrella (hablaba sobre el mecanismo con más detalle en esta entrada).
Este proceso se puede ver en la siguiente simulación en la que varias regiones de una nube molecular se colapsan y empiezan a producir estrellas, todo mientras las diferentes partes del tinglado interaccionan gravitacionalmente:
El proceso de formación de planetas es parecido. El disco de gas que queda dando vueltas alrededor de una estrella tras su formación contiene partículas de elementos más pesados que empiezan a colisionar entre ellas, fusionándose, formando trozos de materia cada vez mayores y con un campo gravitatorio más intenso que atraen aun más material hacia ellos… Y el efecto bola de nieve continúa hasta que se convierten en planetas (hablaba los distintos tipos de planetas en este otro artículo).
Aquí tenéis otra animación del proceso, en la que se puede ver cómo la nucleación de planetas empieza en las regiones más densas del disco de gas y polvo, inducidas por la propia rotación del sistema:
Captado, pero… ¿De dónde salieron esos elementos más pesados que formaron los planetas rocosos, como Mercurio o Venus?
Buena pregunta, voz cursiva.
Después de que tuviera lugar el Big Bang, en el universo tan sólo existían átomos de hidrógeno y de helio (y alguno de litio). Pero, afortunadamente, estos átomos se empezaron a fusionar en los núcleos de las primeras estrellas que se formaron a partir de ellos, convirtiéndose en elementos más pesados como el carbono, el nitrógeno, el oxígeno o el hierro. Las estrellas de esta primera generación eran inmensas y, cuando se quedaron sin combustible, terminaron sus vidas reventando en forma de las mayores explosiones conocidas, las supernovas, lanzado al espacio esos elementos pesados que guardaban en sus entrañas (otra cosa que comenté más concienzudamente en otra entrada).