Archivo de la categoría: química

Respuestas (LXXII): ¿Por qué casi todos los metales son grises?

Un señor que se hace llamar Pepe dejó escrita la pregunta de hoy en la entrada del vídeo en el que extraía hierro de unas rocas. Os dejo aquí su comentario, para que Pepe pueda comunicaros los matices de su duda en sus propias palabras:

Aprovecho para recordar que podéis enviarme vuestras preguntas a jordipereyra@cienciadesofa.com (este es un caso extraordinario).

Tienes toda la razón, Pepe, quitando el oro, el cobre y el cesio, los elementos metálicos (señalados en verde en esta imagen) tienen un color más bien grisáceo que dificulta mucho la tarea de distinguirlos a simple vista.

¡Bah! Chorradas, podría distinguir claramente cualquier metal a ojo.

¿Ah, sí? ¿Entonces qué es esto?

Eeeeh… Pues… Claramente…

Es iridio, voz cursiva, IRIDIO.

Antes de empezar, como ha comentado Pepe, los metales se pueden unir con otros elementos químicos que no son metálicos para dar lugar a algunas sustancias coloridas. Por ejemplo, tres átomos de plomo se pueden combinar con cuatro átomos de oxígeno para producir una sustancia roja llamada tetraóxido de plomo (Pb3O4), aunque los átomos de plomo también pueden formar un compuesto amarillo cuando se unen con uno de cromo y cuatro de oxígeno, generando cromato de plomo (II) (PbCrO4).
Seguir leyendo Respuestas (LXXII): ¿Por qué casi todos los metales son grises?

¿Qué aspecto tiene un átomo? (3/3) (Parte 1)

Por fin os traigo la (primera parte de la) última entrega de la serie de vídeos que empecé en diciembre “¿Qué aspecto tiene un átomo?“. Grabando este último vídeo me he dado cuenta de que la cosa se estaba alargando mucho, así que he preferido separarlo en dos para hacerlo más llevadero (tanto para vosotros como para mi portátil).

En el capítulo de hoy hablaré del estudio de la luz y cómo empezó a influir en los modelos atómicos… Y servirá de introducción para el último vídeo (que intentaré tener terminado para el día 28, como tarde), en el que tocará tratar la mecánica cuántica.

Os dejo con mi versión miniaturizada bidimensional.

Respuestas (XLVII): ¿Cuál es el material más letal conocido, en términos de masa?

Rubén García-Valcárcel me planteó por correo electrónico (jordipereyra@cienciadesofa.com) el tipo de pregunta que más me gusta responder: algo que nunca me había planteado y que me resulta desconcertante a primera vista. ¿Cual es la cantidad mínima de materia necesaria para matar a un ser humano?

Quería aclarar que me ha parecido otra manera de enfocar la pregunta “¿cual es el material más mortífero?” y he preferido poner eso como título, ya que el objetivo de la entrada es hablar un poco de las peculiaridades de las sustancias que trataré y su efecto sobre el cuerpo humano, no de la idea de matar.

La cuestión es que, en el e-mail, Rubén también especifica que la forma en la que se encuentre la sustancia y el mecanismo a través del cual conduzca a la muerte son indiferentes. Puede ser un compuesto venenoso, un explosivo o cualquier cosa que se me ocurra, lo único que importa es que se trate de la menor cantidad de material posible.

Si las reglas han quedado claras, podemos empezar por los venenos.

Cualquier sustancia puede matarnos si nos exponemos a ella en cantidades suficientes. De hecho, la mayoría de cosas que nos metemos en el cuerpo en nuestro día a día son potencialmente letales en este sentido. Paracelso ya lo transmitió en el siglo XVI: “Todo es veneno, nada es sin veneno. Sólo la dosis hace el veneno“.

Para evaluar la toxicidad de compuesto químico se utiliza la dosis letal mediana (DL50), que es la masa de una sustancia que provoca la muerte al 50% de los sujetos expuestos a ella. Por ejemplo, el agua, la misma sustancia que nos mantiene vivos (aclaración innecesaria), es tóxica en grandes cantidades: su DL50 es de alrededor de 90 ml/kg, o 90 mililitros de agua  ingerida por cada kilogramo de masa corporal de la persona que la toma. Esto significa que alguien que pese 83 kilos, como el autor de Ciencia de Sofá, tendrá un 50% de probabilidades de morir si bebe 7,5 litros de agua en poco tiempo.

¿Pero qué dices? ¿Cómo va a matarte el agua?

Pues sí, voz cursiva, deshidratarte no es agradable, pero tampoco lo es hidratarte en exceso porque las células se hinchan a medida que absorben el agua que al cuerpo no le da tiempo a excretar a través de la orina. Las células del cerebro son especialmente vulnerables a este efecto porque, a medida que el cerebro se hincha mientras absorbe agua, puede llegar a ejercer suficiente presión contra las paredes del cráneo como para provocar daños cerebrales y la muerte.

Pero, bueno, 7,2 litros de agua es una cantidad enorme de materia. Hay otras cosas a nuestro alrededor que nos matarán en dosis menores, como por ejemplo el azúcar. Con una DL50 de unos 29,7 g/kg, me tendría que tomar casi 2,46 kilos de azúcar antes de tener un 50% de probabilidades de la gula me matara (eso son 4,1 kilos de Nutella, por si os lo preguntabais).
Seguir leyendo Respuestas (XLVII): ¿Cuál es el material más letal conocido, en términos de masa?

¿Qué aspecto tiene un átomo? (2/3)

Inauguro la temporada 2016 del blog con la segunda parte de “¿Qué aspecto tiene un átomo?“. Me gustaría haberlo tenido lista antes, pero no me gustó cómo quedaba y preferí volver a grabarlo desde cero. Podéis ver el primer vídeo haciendo click aquí.

Esta vez toca hablar del descubrimiento de las partículas fundamentales que forman el núcleo de los átomos, que nos permitirían saber qué distingue unos elementos de otros. Como siempre, cualquier crítica que me ayude a mejorar los vídeos es bienvenida (ya tengo en cuenta que comprar un foco será una buena idea).

Charla: ¿Estamos solos en el universo?

En noviembre di una charla para los alumnos de bachillerato del instituto Mestral, en Ibiza. Me lo pasé muy bien y, a juzgar por los 20 minutos que duró el turno de preguntas, creo que al público también le gustó. En la charla expliqué qué es la paradoja de Fermi y hablé sobre cómo va la búsqueda de vida extraterrestre tanto dentro como fuera del sistema solar.

Y, por supuesto, quería compartirla con vosotros así que como siempre, acudí a mi amigo Yaroslav Prokhorov para la grabación. Tuvimos algunos problemas con el audio, pero creo que al final ha quedado algo que se puede entender bien.

Aquí os dejo la charla (que empieza en el minuto 3:08, por cierto), ¡espero que la encontréis interesante!

¿Qué aspecto tiene un átomo? (1/3)

Para la entrada de hoy he querido volver a experimentar con los vídeos. Ya hice uno en verano, pero quedó bastante cutre, así que me he comprado equipamiento más decente y he aprendido a usar un programa de edición de vídeo más complejo que el Movie Maker.

Este vídeo es el primero de una serie de tres (espero) en la que hablaré sobre cómo nuestra visión de los elementos más básicos que componen la materia, los átomos, ha ido cambiando a lo largo de la historia. La intención, a parte de saber por qué creemos que los átomos tienen una estructura determinada pese a que no podamos verlos, es terminar tocando de refilón un poco de física de partículas y mecánica cuántica… Y mejorar a medida que haga más vídeos, por supuesto.

Aquí os dejo con la quimera. Cualquier crítica es bienvenida.

El terrorífico difluoruro de dioxígeno (y un par de cosas sobre química)

El otro día estaba releyendo un genial post de la web XKCD en el que su autor menciona el difluoruro de dioxígeno (O2F2), el compuesto químico más reactivo conocido. Así que he pensado que sería una buena idea hablar sobre reacciones químicas y, de paso, explicar cómo de peligrosa puede llegar a ser esta sustancia porque, para empezar, casi cualquier material que entre en contacto ella arderá en llamas espontáneamente, incluso a temperaturas criogénicas de -184ºC.

¿Cómo que incluso? ¿Acaso la química se detiene si hace suficiente frío?

Buena pregunta, voz cursiva. Me explico.

Una reacción química no es más que el intercambio de átomos entre moléculas distintas. Las moléculas de oxígeno del aire tienden a quedarse pegadas a los átomos de hierro, formando óxido de hierro. Cuando el ácido clorhídrico reacciona con el carbonato de calcio, el cloro que contiene el ácido separa los átomos de calcio del compuesto, dejando libres al oxígeno y el carbono para formar dióxido de carbono y agua.

Como podéis ver en estas dos reacciones químicas, los átomos que contienen las moléculas simplemente se reestructuran para formar nuevos compuestos.

Pero, claro, para que dos moléculas reaccionen químicamente, primero tendrán que entrar en contacto. O sea que, a nivel macroscópico, la velocidad a la que se produce una reacción química entre dos sustancias dependerá de dos cosas: de cuántas moléculas entren en contacto cada segundo y la energía con la que choquen unas contra otras.
Seguir leyendo El terrorífico difluoruro de dioxígeno (y un par de cosas sobre química)

¿Podría el sistema solar ser un átomo gigante?

Mucha gente se hace esta pregunta, cuya versión extendida sería algo así como: ¿Y si el sistema solar es en realidad un átomo gigante y el universo es algún trozo de materia de un universo aún más grande?

El último en planteármela por e-mail ha sido asfasd fasdfasdf, así que voy a responderla antes de que alguien con un nombre aún más absurdo me la repita. Aprovecho para demostrar que esta historia es verídica y de paso recordar el e-mail al que podéis mandarme vuestras preguntas:

A parte de  la escena final de la primera película de Men In Black, supongo que este planteamiento tiene su origen en la vieja imagen que tenemos todos de un átomo, potenciada por libros de instituto, documentales e incluso este mismo blog muchas veces: un átomo aparece siempre representado como un núcleo formado por unas bolas grandes y está rodeado por otras bolas que dan vueltas a su alrededor a cierta distancia.

Pero resulta que esta imagen no es correcta. Por la cuenta que nos trae, podemos usar gatos en vez de bolas para representar las partículas subatómicas (como ya hice en esta entrada sobre el agua pesada) porque es simplemente eso, una representación de un fenómeno que no somos capaces de observar.
Seguir leyendo ¿Podría el sistema solar ser un átomo gigante?

¿Podría existir un número infinito de elementos químicos sin descubrir?

Carbon Cronudo (sospecho que este podría no ser su nombre real) me preguntó hace un tiempo cuántos elementos habrían en la tabla periódica que aún no hemos descubierto y si potencialmente podría existir un número infinito de elementos sin descubrir.

Sin más dilación, vamos a ponernos en contexto.

¿Os habéis preguntado por qué el hierro es hierro y el oro es oro? ¿O por qué el oxígeno es un gas y el mercurio es un líquido? O sea, en el fondo, ¿Qué es lo que hace que un elemento químico presente un color, densidad o, yo que sé, una conductividad eléctrica concretas que lo diferencia de los demás?

Pues, como ya sabréis, resulta que los átomos están compuestos por partículas más pequeñas llamadas protones, neutrones y electrones. Los protones tienen carga positiva y se encuentran en el núcleo del átomo y los electrones, con carga negativa, dan vueltas a su alrededor. Un átomo está en equilibrio eléctrico cuando tiene el mismo número de cargas positivas en su núcleo que negativas dando vueltas a su alrededor o, lo que es lo mismo, cuando contiene el mismo número de protones y electrones.

¿Y entonces para qué sirven los neutrones?
Seguir leyendo ¿Podría existir un número infinito de elementos químicos sin descubrir?

¿Cómo se forman los minerales?

Generalmente, en la naturaleza es muy complicado encontrar objetos que contengan líneas rectas, ángulos regulares, transparencias o incluso juegos llamativos de colores. Si vas a dar una vuelta por el campo y miras al suelo, tienes altas probabilidades de encontrarte algo de este estilo:

Meh. (Fuente)

Por eso siempre me ha fascinado que, entre todo este desorden aparente y, siendo francos, aburrido, existan lugares donde puedes levantar una roca y toparte con cosas que le llevan la contraria a su entorno, como estos cristales de cuarzo: