Archivo de la categoría: Astronomía

Planetas de diamante

El año pasado vi esta noticia y me la hemos vuelto a encontrar ahora por casualidad.

DESCUBREN UN PLANETA DE DIAMANTE

El titular evoca una imagen así.

Y no, las cosas no funcionan de esta manera.

A parte de decir sinsentidos como “velocidad hiperbólica” y, aunque más o menos aclaran la falacia que es es el titular, creo que el artículo no termina de dejar claro el asunto, así que le tomaré el relevo al periódico ABC en un gesto de humildad sin precedentes.

El supuesto megadiamante es 55 Cancri e, uno de los cinco planetas que orbitan la estrella 55 Cancri A. De hecho, gira alrededor de su estrella tan cerca que su año dura 18 horas y la temperatura en su superficie ronda los 2000 ºC. Es un planeta rocoso gigante catalogado como una súpertierra, con una  masa 14.2 veces mayor que la de nuestro planeta.

En primer lugar, ¿Qué diferencia a 55 Cancri e de la Tierra?
Seguir leyendo Planetas de diamante

Luz verde

¿Y si os decimos que, justo antes de que el sol desaparezca tras el horizonte o emerja por el él, emite un breve destello de luz verdosa? ¿No? ¿No cuela?

Pues así es.

Crédito: este colaborador de wikipedia.

¡Pero si he visto cientos de puestas de sol y nunca he presenc…!

Madre mía, ¡¿Te quieres callar?!

El responsable de este fenómeno es la refracción, la desviación que sufre la luz cuando cambia de medio, en este caso, las diferentes capas de la atmósfera,. La refracción puede apreciarse, por ejemplo, alrededor de superficies muy calientes o al meter un objeto en un vaso de agua.
Seguir leyendo Luz verde

El meteorito de Hoba

Hace 80.000 años cayó en la actual región de Hoba, Namibia, un meteorito que no dejó ningún cráter.

“Nadie había pensado qué hacer después de desenterrarlo, ¿verdad?”

Un granjero lo descubrió en 1920 mientras labraba sus tierras, cuando su arado chocó contra algo que emitió un sonido metálico. Tras desenterrarlo y llamar a las autoridades, el gobierno decidió que no podían mover el meteorito de sitio por su enorme masa y que lo dejarían allí.

Con 60 toneladas y una composición del 82% de hierro y el 18% de níquel, es el pedazo de hierro más grande del mundo formado de manera natural… Y aún así chocó contra la Tierra sin no dejar ninguna marca.

Pero hombre… ¿Cómo no va a dejar un cráter? ¿Estás loco?

Por un lado, el suelo de la zona está compuesto por sedimentos de carbonato cálcico que forman piedra caliza y arenisca, dos materiales bastante blandos.

Además, los investigadores creen que la forma aplanada del objeto permitió que el roce con la atmósfera ralentizara su caída hasta la velocidad terminal, de manera que el meteorito se posó sobre el suelo tan suavemente (aunque siguen siendo 320 m/s, hablamos de suavidad en términos de impactos meteoríticos) que no dejó provocó una catástrofe al aterrizar. Obviamente, el suelo no quedó intacto, pero no produjo un desastre como el que cabría esperar con un pedazo de hierro de 60 toneladas cayendo a casi 1200 km/h.

Hablábamos del concepto de velocidad terminal en esta entrada sobre disparos verticales.

Y, a continuación, la imagen que todo el mundo estaba esperando.

El meteorito en casi todo su esplendor. Crédito: Mike.

No he encontrado exactamente qué son esos parches plateados, pero diría que son zonas que contienen más níquel que el resto del meteorito y que se fundieron durante la caída hacia la superficie. El oxígeno de la atmósfera debió oxidar el resto del meteorito, de alto contenido en hierro, y las partes con más níquel, difícilmente oxidable, han permanecido casi intactas (si alguien sabe algo más o puede verificar mi suposición, le agradecería que me corrigiera en los comentarios).

Crédito: wikimedia.

Crédito: coda.

Digo casi intactas porque tontos los hay por todos lados, y hubo turistas que se dedicaron a dejar marcas en el meteorito o a llevarse pedazos a casa hasta que el lugar se declaró oficialmente zona de interés turístico y el gobierno lo protegió.

Lentes gravitacionales

Dejo aquí esta imagen sin ninguna explicación y te reto a adivinar lo que es sin mirar leer el resto de la entrada. 

No, no, aunque lo sepas puedes seguir leyendo.
Ni siquiera la luz puede escapar de un agujero negro” es una frase que suena familiar aunque no se sienta ningún interés por la astronomía. Y es verdad, la fuerza gravitatoria de un agujero negro es tan grande que absorbe hasta la luz, pese a que viaje por el espacio a 300.000 kilómetros por segundo. Pero no hay que ser una singularidad de densidad infinita para tocarle la moral a la luz.
Pero, si los fotones, las partículas que componen la luz, no tienen masa- estamos simplificando para no soltar una parrafada extra, físicos, por favor, detened a vuestros sicarios- ¿Cómo puede afectarles la fuerza de la gravedad?

La gravedad como la entendemos, según la Relatividad General, no es exactamente una fuerza que ejerce su influencia sobre las cosas, sino una distorsión del espacio-tiempo.

La manera de representarlo es el típico ejemplo de la bola sobre una malla. Si el espacio fuera una malla elástica estirada, entonces la gravedad sería la distorsión que un objeto crea al posarse sobre ella. Cualquier cuerpo que intente atravesar esta distorsión va a ser desviado, ya sea un planeta, Ronnie Coleman, un asteroide o la propia luz.

Aunque, para representar mejor el fenómeno de la gravedad y la malla, habría que añadirle una tercera dimensión a la malla, meter la bola dentro y que de alguna manera esta tirara de ella en todas direcciones. Es un ejemplo algo más contraintuitivo, pero queda algo así.

Así que cuando un objeto muy masivo, normalmente una galaxia, se interpone entre nosotros y algo brillante, la distorsión que crea en el espacio desvía la luz a su alrededor y nos la devuelve con un ángulo diferente. Desde nuestro punto de vista no percibimos esa desviación, y nos parece que el objeto está ahí de donde viene la luz.
A escala en la imagen: nada.
Hay muchos grados de desviación, según la masa del cuerpo que actúa como lente, la distancia a la que esté del objeto y de nosotros. Con esta herramienta se puede jugar un poco con estos parámetros y ver la lente gravitacional resultante.
Hay muchos ejemplos de lentes gravitacionales, el más famoso de ellos es la “cruz de Einstein”, a quien se le dio el nombre de este afamado científico porque en parte lo predijo cuando desarrolló la relatividad general.

“¿Revoluciono la física y me lo agradecéis poniéndole
mi nombre a ESTO?” – Albert Einstein. 

Y, como siempre, la cosa se sale de madre por algún lado.
En este caso, son las estrellas de neutrones las que rompen el saco. Aconsejo familiarizarse un poco con los agujeros negros en esta entrada antes de seguir leyendo.
¿Ya está? Bien.
Las estrellas de neutrones son las hermanas pequeñas de los agujeros negros. Si habéis leído la entrada que os he mencionado, sabréis que un agujero negro son los remanentes comprimidos hasta el extremo de una estrella muy masiva
Cuando una estrella inmensa llega al final de su vida, estalla con la explosión más potente que se conoce: una supernova. Esto manda a tomar por saco las capas superficiales de la estrella y comprime el núcleo con una fuerza inimaginable. Lo que queda cuando se disipa todo el desastre es el mismo núcleo de la estrella, sólo que muchísimo más pequeño y con muchísima más masa.
Según lo grande que fuera la estrella, una mayor o menor cantidad de masa quedará compactada en el núcleo y dará lugar a:
1) Un agujero negro, un punto de densidad infinita en la que no pueden aplicarse las leyes de la física.
2) Una estrella de neutrones, una esfera tan densa que si pudiéramos acercarnos, coger una cucharada de té (unos 5 mililitros) de su superficie, traerla de vuelta a la Tierra y… 
… Bueno, una cucharadita de estrella de neutrones pesaría unos 5.000.000.000.000 (cinco billones) de kilos, así que el aterrizaje de la nave que trajera eso de vuelta sería un poco accidentado y toda esa masa probablemente acortaría el día unos microsegundos o algo por el estilo, así que olvidémonos de esta expedición estrafalaria.

A parte de su densidad y tamaño, tampoco sabemos mucho de las estrellas de neutrones, de todas maneras.

Traducción de más o menos toda la imagen: “no tenemos ni 
idea, así que vamos a poner conceptos generales y palabras técnicas  
que suenan bien”. Fuente: astro.umd.edu.
La cuestión es que, al contrario que un agujero negro, las estrellas de neutrones tienen una superficie sobre la que podrías pasear tranquilamente si fueras capaz de soportar 200 mil millones de veces tu propio peso, mientras conservan un potente campo gravitatorio debido a la enorme cantidad de masa que las compone. 
Y, en ese caso, podemos simular cómo verías el cielo a medida que te vas acercando a una estrella de neutrones y la sobrevuelas cerca de la superficie. Básicamente, estarías observando lentes gravitacionales allá donde miraras.

Hay que entrar el siguiente link, ya que es una especie de “gif” convertido en una animación “flash” y no he conseguido adjuntarlo directamente en el “post”.

Explico un poco de qué va el asunto, por si hay problemas con el inglés.
La animación nos muestra una nave acercándose a la Tierra, y las estrellas de fondo no cambian porque la gravedad terrestre es demasiado débil como para afectar a la luz. 
A partir de este punto, imaginamos que la Tierra es una estrella de neutrones. A medida que nos acercamos a ella, el fondo estrellado empieza a distorsionarse progresivamente porque la luz está siguiendo el espacio-tiempo fuertemente distorsionado. Si nos ponemos a rotar alrededor de la estrella, el panorama se vuelve aún más bizarro.

Finalmente, la animación imagina que sobrevolamos la estrella de neutrones a cierta distancia de la superficie. El cielo parece volverse completamente loco en este punto y las estrellas se desplazan hacia la franja central del cielo y escapan hacia arriba. El propio horizonte se curva hacia arriba por el mismo efecto y cada vez que giraras la cabeza el panorama cambiaría.

La animación termina diciendo que la vida en una estrella de neutrones sería como vivir en una “fun house”, que se traduce como “casa de la diversión”, que supongo que es alguna atracción de feria divertida.

Personalmente, a este caos no le veo la diversión por ninguna parte.

¿Cómo se forma un agujero negro? ¿Podría el acelerador de partículas producir uno?

Gonzalo Hernández rescata del baúl de los recuerdos una duda que en su día preocupó a más de uno: ¿Podría producir un agujero negro el LHC, el acelerador de partículas más grande del mundo?

Así que vamos a ver primero en qué condiciones se forman los agujeros negros para ver si podría aparecer uno en el interior de nuestros aparatos más sofisticados.

Los agujeros negros aparecen del colapso final de estrellas que tienen, al menos, 20 veces la masa de nuestro propio sol. Pero, para ver cómo ocurre esto, tenemos que saber primero por qué brillan las estrellas.

El centro de una estrella es una explosión termonuclear constante. En todo momento, parejas de moléculas de hidrógeno se están fusionando entre sí para convertirse en helio, un elemento más pesado. La reacción libera una cantidad tremenda de energía… Bueno, la energía resultada es de tal magnitud que en la Tierra usamos la reacción para construir bombas H, las armas más devastadoras jamás creadas. En el siguiente vídeo, a partir del minuto 1:15, podemos ver un ejemplo.

O sea, que en el núcleo de una estrella se genera de manera constante una onda expansiva termonuclear descomunal.

Eh, eh, entonces, ¿Cómo puede una estrella tener forma de esfera si algo dentro está explotando? ¿No debería salir despedida en todas direcciones?
Seguir leyendo ¿Cómo se forma un agujero negro? ¿Podría el acelerador de partículas producir uno?

¿Son peligrosas las tormentas solares?

Según la NASA, últimamente el sol está haciendo cosas que no se esperaban. Pero no compremos aún el kit de supervivencia. Calma.Se habla mucho de llamaradas solares que podrían desatar una tormenta geomagnética que devolvería a nuestra sociedad al siglo XVIII pero, ¿alguien se digna a decirnos qué son y si deberíamos preocuparnos?

Estos titulares no venden.

En primer lugar, el sol es una explosión termonuclear constante de un millón y medio de kilómetros de diámetro que representa el 99.86% de la masa de todo el sistema solar. No debería extrañarnos que, de tanto en tanto, haga cosas raras. De hecho, lleva haciendo cosas raras desde hace millones de años, con una media de un suceso perjudicial para nuestros sistemas eléctricos cada 500 años, según se puede deducir de los registros dejados por las tormentas geomagnéticas en las capas más profundas del hielo antártico. Pero, claro, de eso no teníamos que preocuparnos hasta hace poco.
Seguir leyendo ¿Son peligrosas las tormentas solares?

La señal “Wow!”

El 15 de agosto de 1977, el corazón de Jerry R. Ehman dio un vuelco al recibir este aterrador mensaje:

Ehman trabajaba para el proyecto SETI, una red de antenas dedicada a rastrear el cielo en busca de posibles señales de radio emitidas por alguna civilización extraterrestre. Ese día en concreto, estaba trabajando con el radiotelescopio “Big Ear” cuando de la impresora salió la siguiente tira de papel.

Incapaz de contener la emoción, Jerry cogió su boli rojo, rodeó con pasión aquellas letras y escribió “Wow!” junto a ellas, bautizando el momento sin querer.

Ya, todo esto está muy bien, pero ¿Y qué pasa con 6EQUJ5? 

Ante nada, hay que tener en cuenta que 6EQUJ5 no significa literalmente 6EQUJ5.
Seguir leyendo La señal “Wow!”

Asteroides y diamantes

Como ya sabréis, un meteorito ha caído sobre Rusia y me ha recordado una historia que leí hace un tiempo. 
Pero primero, hablemos de actualidad. 
Esta madrugada, un meteorito ha entrado en la atmósfera y ha provocado daños las poblaciones rusas  de Cheliabinsk, Sverdlovs y Tyumen

Fuente: BBC.
Casi un millar de personas han resultado heridas, pero no a causa de una lluvia de roca fundida al estilo Hollywood, sino porque el meteorito ha explotado en el aire y la onda expansiva generada ha reventado todos los cristales que ha encontrado en su camino, que luego han caído a la calle, concretamente sobre las cabezas de los que paseaban tranquilamente bajo las ventanas.



Cómo no, he visto que en las redes sociales la gente empezaba a sacar sus teorías (probablemente, ni siquiera eran propias).

Hay quién dice que el meteorito fue interceptado por el sistema de defensa anti-misiles ruso, cosa  que dudo, dado que esta mole de 10 toneladas se movía a 54.000 km/h. Un misil intercontinental tiene suerte si pasa de 2.500 km/h. 

No soy un experto, pero yo lo descartaría.

Otros argumentan que esto no era más que la carta de presentación de un asteroide más grande, 2012 DA14 (que, por cierto, fue descubierto por un equipo amateur español), que pasará muy cerca de la Tierra esta noche, y que ahora viene le gordo. Dos cosas:

– El asteroide viene en dirección opuesta a la que ha caído el meteorito ruso.
– La órbita del asteroide lleva tiempo siguiéndose y se conoce muy bien. Todo indica a que no va a impactar contra nosotros.
EN EL HIPOTÉTICO CASO, que no es el nuestro, de que impactara, es un cuerpo muy pequeño. Mide unos 50 metros de diámetro. Me suena que hace algunos años ya pasó algo parecido con uno más grande, y no hizo más que desintegrarse en la atmósfera. Cuando encuentre algo lo actualizaré, pero ahora tengo prisa porque me van a cerrar el supermercado.

Así que nadie se preocupe, podemos posponer el sacrificio de Bruce Willis unos años más.
Si queréis seguir en directo el paso del asteroide, la NASA lo ha montado para que podáis verlo aquí.

Y la noticia de la que hablaba al principio.

Hace 35 millones de años, un asteroide de verdad impactó al noreste de lo que ahora es Rusia (a saber en aquella época cómo estaban distribuidos los continentes) y el impacto generó un cráter de casi 100 kilómetros de diámetro al que, millones de años después, los rusos llamaron Popigai. Muy mal.

Normalmente, las historias de asteroides terminan así y volvemos a Facebook a ver si durante el minuto que llevamos leyendo ha pasado algo importante. Pero esta es diferente.

Al parecer, el meteorito se estrelló contra un yacimiento de grafito, por lo que el calor y la presión desatados durante el impacto convirtieron grandes cantidades de carbono en diamante. En otra entrada ya hablamos de las diferentes estructuras que puede adoptar el carbono

En fin, que esos diamantes no se han movido del sitio y han permanecido en el mismo lugar durante todos esos millones de años, hasta que un grupo de geólogos rusos lo descubrió en los años 70 y lo archivaron automáticamente como secreto de estado. Recientemente, estos archivos han salido a la luz y Rusia no hace más que chulear porque dicen que pueden abastecer ellos solitos el mercado de diamantes durante 3.000 años.

Teniendo en cuenta que un quilate (o 200 miligramos, hablamos del tema aquí) suele valer alrededor de 2.000$, y teniendo en cuenta que los cálculos apuntan a que en el cráter hay varios billones de quilates enterrados, podemos imaginar cómo crecerá el PIB de Rusia cuando empiece a explotarlo en serio.

Aunque deberían habérselo callado, porque encontrar unas reservas tan grandes no hará más que abaratar los diamantes, ¿no?

Lo siento, tampoco soy economista.

La Gran Mancha Roja

Una tormenta de nubes rojizas lleva soplando sin descanso desde hace más de 300 años y nadie se da cuenta, pero no hay que preocuparse: igual que el volcán más grande del sistema solar, este fenómeno no se encuentra en la Tierra.

En un alarde de originalidad sin precedentes, su descubridor recurrió a sus instintos más básicos y bautizó lo que estaba viendo a través del telescopio como la Gran Mancha Roja.

Nuestro corresponsal en Júpiter nos cuenta la historia.

Júpiter es el planeta más grande del sistema solar, con unos 140.000 kilómetros de diámetro (frente los 12.756 de nuestro planeta). Está compuesto, casi por completo, por gas (75% de hidrógeno, 24% de helio) y, de hecho, si tuviera una masa 10 o 12 veces mayor, su núcleo estaría sometido a la presión suficiente como para encenderse y convertirlo en una estrella.

Uno de los rasgos que nos puede resultar menos familiar de Júpiter es que no tiene una superficie sólida. En lugar de eso, su atmósfera va volviéndose más densa a medida que nos vamos acercando al núcleo (y hasta ahí hay un rato de camino), donde las presiones son tan altas que se especula sobre la existencia de hidrógeno metálico. En otras palabras: presiones tan altas que consiguen que un gas se comporte como un metal.

Por cierto, ¿He comentado ya que la tormenta de la que hablábamos al principio mide 20.000 km de largo por 12.000 de ancho? No, ¿Verdad?

Pero, en la Tierra las tormentas más grandes duran como mucho unos días, quizás semanas… ¿Por qué la Gran Mancha Roja lleva – al menos – 300 años activa?

Uno de los factores que hay que tener en cuenta es que la Tierra tiene una superficie sólida, por lo que una tormenta va perdiendo potencia a medida que el viento transmite la energía al suelo. En Júpiter, una bola de gas de diferentes densidades, una tormenta puede desplazarse perdiendo muy poca energía a causa del rozamiento.Otra razón, y quizás la más significativa, es el llamado efecto Coriolis.

Profundicemos.

Si la Tierra no rotara sobre su eje, además de una notable diferencia de bronceado entre sus habitantes, el aire tan sólo circularía de norte a sur. Esto es porque la temperatura se transmite de los focos calientes a los más fríos, y el aire caliente del ecuador, que recibe más radiación solar, tendería a desplazarse hacia los polos y viceversa, sin más efecto.

Básicamente.

Pero cuando entra en juego la rotación, la cosa cambia.

Como la atmósfera no está “anclada” a la superficie igual que un objeto sólido que descanse sobre ella, cuando el planeta rota hacia un lado, las capas de aire alejadas del suelo tienden a quedarse un poco rezagadas. El mismo efecto que tiene lugar cuando pasamos la mano por el agua: el líquido que se encuentra en contacto directo, o muy cerca, de la piel es capaz de igualar la velocidad que lleva la mano. Pero, en puntos más alejados, vemos que el fluido va mucho más lento. En un punto suficientemente lejano, el agua ni se ha movido.

Total, que, contando el efecto Coriolis, la atmósfera se convierte en esta locura.

(Fuente: www.astronomynotes.com)

Por si eso no fuera suficiente, el último dato a considerar, es que por algún motivo que no está del todo claro, Júpiter emite el doble de energía del que recibe del Sol. El flujo de calor proveniente del núcleo del planeta podría, en teoría, estar alimentando la tormenta desde las capas más bajas de la atmósfera.

Con todo lo dicho, tengamos en cuenta entonces dos factores:

1) Su diámetro es casi 11 veces el de la Tierra.

2) Tiene el periodo de rotación (el “día”) más corto de todo el sistemas solar, tardando sólo 9,9 horas en dar una vuelta sobre su eje.

Y teniendo en cuenta que el efecto Coriolis se intensifica cuanto mayores son el radio y la velocidad de giro,  no debería extrañarnos la existencia de una tormenta de 20.000 kilómetros de largo con vientos de hasta 400 km/h.

Así que pensémoslo dos veces antes de colapsar Facebook porque está lloviendo un poco.