Raúl González me mandó la siguiente pregunta a jordipereyra@cienciadesofa.com: «¿cómo puede una enana blanca tener una temperatura mayor que la superficie del sol, si estas estrellas ya no producen su propia energía? ¿De dónde procede semejante calor?»
He mencionado por encima las estrellas enanas blancas en otras entradas (como esta y esta otra) pero, para entender de dónde sale el calor que las hace brillar, primero tendremos que ver cómo se forman estos curiosos objetos.
«Primero tendré que irme por las ramas», querrás decir.
Exactamente. Pero es un mal necesario, voz cursiva.
Como sabéis, las estrellas brillan gracias a la energía liberada por las reacciones de fusión nuclear que tienen lugar en sus núcleos, donde las condiciones extremas de calor y presión obligan a los átomos de hidrógeno a unirse entre ellos, formando un elemento más pesado, el helio, y emitiendo los rayos gamma que calientan la masa de la estrella hasta la incandescencia.
(Fuente)
En el caso del sol, por ejemplo, los 15.000.000ºC que reinan en su núcleo se traducen en una temperatura superficial de unos 6.000ºC… Que puede parecer muy baja en comparación, pero hay que tener en cuenta que el calor del núcleo se tiene que repartir por todo el volumen de nuestra estrella, que básicamente es una bola de gas de 1,4 millones de kilómetros de diámetro.
Pero, como bien ha señalado Raúl, la superficie de una enana blanca puede alcanzar temperaturas muy superiores a la de cualquier estrella convencional sin que en su interior exista ningún tipo de mecanismo que produzca energía.
Pues ya me dirás tú qué clase de estrella rara no produce su propio calor.
Bueno, es que, para empezar, las enanas blancas no son estrellas propiamente dichas, sino los restos de otras estrellas que han agotado su combustible.