¿Por qué el mar es azul?

Aprovecho que se acaba el verano para colar un último vídeo de “temática veraniega“. Hoy toca hablar sobre cómo la cantidad de agua que tiene que atravesar un rayo de luz afecta a su color.

Por si os desconcierta un poco que cuelgue dos vídeos seguidos, no es que tenga pensado dejar de escribir para convertirme en youtuber, pero últimamente me paso el día escribiendo para un nuevo proyecto súper secreto (guiño, guiño) y los vídeos me sirven para que mis dedos no terminen fusionándose con el teclado. En un mes o así todo volverá a la normalidad.

¡Os dejo con el vídeo!

Extrayendo hierro de unas rocas

Como habréis deducido alguna vez por las referencias que he hecho en alguna entrada o por el otro vídeo que colgué hace relativamente poco en el que visitaba una mina, soy aficionado a la geología y, en concreto, colecciono minerales.

Lo que no había hecho nunca es extraer un elemento químico de alguno de los minerales que encuentro… Hasta que hace unos días conseguí aislar el hierro de unos trozos de goethita. Y, como tiene algo de ciencia, grabé el proceso en vídeo para enseñároslo.

¡Espero que os entretenga!

¿Qué es el Gran Atractor?

Si estás pasando el rato leyendo sobre los misterios del espacio y de repente te topas con algo llamado “el Gran Atractor“, seguramente no te vendrá nada bueno a la cabeza. En este universo en el que una de las cosas más terroríficas que hemos descubierto es que los agujeros negros existen, la idea de ser atraídos hacia algún otro lugar que no sea nuestro sol y en la medida justa para mantener una órbita estable a su alrededor no nos hace mucha gracia.

Es posible que por eso muchos me hayáis escrito preguntándome qué es ese “Gran Atractor“, tal vez con la esperanza de que os diga que todo va a ir bien, que es nuestro amigo y que nos está conduciendo hacia un lugar maravilloso. Y, aunque es verdad que el “Gran Atractor” no nos va a regalar caramelos, lo cierto es que tampoco nos va a destruir.

Deja de andarte por las ramas como si todo el mundo supiera de qué estás hablando y ve al grano.

Tienes razón, voz cursiva. Primero, pongamos un poco de contexto al asunto.

En la década de 1970, los astrónomos estaban estudiando la recién descubierta radiación de fondo de microondas, una señal de radio muy uniforme que llega hasta nosotros desde todas las direcciones del espacio. Se puede pensar en esta señal como un débil brillo que ilumina todo el cielo por igual, pero que no podemos ver porque nuestros ojos no son capaces de detectar este tipo de radiación electromagnética. O sea, que la existencia de este brillo se descubrió utilizando instrumentos que sí que pueden “ver” las ondas de radio: los radiotelescopios.
Seguir leyendo ¿Qué es el Gran Atractor?

¿Cómo de “fresco” es el color blanco en verano?

Hace poco me compré un termómetro infrarrojo a través de Amazon porque, entre otras cosas, tenía ganas de ver hasta qué punto es mejor vestirse de color blanco para pasearse bajo el sol en verano… Y de enseñaros el resultado, claro.

En el vídeo de hoy dejo una camiseta blanca y otra negra al sol para ver qué temperatura alcanzan (si intentáis adivinarla antes de ver el vídeo, seguramente os sorprenda más) y, de paso, comento la información que he encontrado sobre el tema para ver si hay alguna situación en la que vistiendo de negro pasaremos menos calor que yendo de blanco.

Patrañas (XIII): Los círculos en los campos de cultivo

Tenía algo abandonada la sección de Patrañas, pero Javi Chino me recordó hace poco a través de Facebook la existencia de los círculos en los campos de cultivo y que mucha gente defiende que estos dibujos tienen origen extraterrestre, así que hoy toca repasar por encima la historia de estos dibujos y sus características. Luego decidiremos si la hipótesis de su origen extraterrestre explica mejor el fenómeno que su origen humano.

¿Cómo que luego decidiremos? ¿¡Cómo no van a ser obra de extraterrestres!?

Bueno, voz cursiva, es que para tomar una decisión informada, primero tienes que analizar todos los datos disponibles y a partir de ellos sacas tus conclusiones. No vale sacar una conclusión primero y después intentar ajustar los datos a tu idea según los vas encontrando, quedándote con los que apoyan tu hipótesis e ignorando los que no te convienen.

Pero antes, por si algún lector no sabe de qué va el tema, dejo por aquí una imagen de uno de esos “círculos” en los cultivos para refrescarle la memoria:

¿Por qué los cráteres son (casi siempre) redondos?

En la sección de comentarios de la última entrada que publiqué (un vídeo en el que explicaba cómo podéis ver dos puestas de sol seguidas en vez de una), un lector llamado Odin se preguntaba por qué los cráteres tienen siempre forma redonda. Para ilustrar su duda con un ejemplo, echemos un vistazo a esta imagen de la superficie de la Luna:

En mayor resolución, aquí. (Fuente)

Teniendo en cuenta la cantidad de trayectorias en las que un objeto se puede dirigir hacia la Tierra, parece lógico que la mayoría de los meteoritos caigan en ángulo y excaven cráteres más “alargados”, así que el comentario generó varias respuestas interesantes, como que la gravedad de la Tierra modifica la trayectoria de los asteroides de manera que todos impactan de manera perpendicular al suelo o que la componente vertical de la velocidad durante la caída de un meteorito es tan grande que su velocidad horizontal no tiene ninguna influencia durante el impacto. Aun así, ninguna de ellas conseguía explicar la verdadera causa de este fenómeno porq…

… Porque están asumiendo que un meteorito choca contra el suelo como si fuera una piedra lanzada con mala leche, ¿verdad?

En efecto, voz cursiva. Me explico.
Seguir leyendo ¿Por qué los cráteres son (casi siempre) redondos?

Cómo ver dos puestas de sol en un mismo anochecer

Ya había mencionado en otro vídeo que subí a principios de este año que si veis una puesta de sol con la cara pegada al suelo y os levantáis deprisa cuando el último rayo de luz desaparece tras el horizonte, entonces podréis ver ese último trozo del sol desapareciendo de nuevo (y habréis visto una “puesta de sol doble”, vaya).

Pues, bien, en el vídeo de hoy uso este método para grabar dos puestas de sol seguidas, separadas por un intervalo de 11 segundos, Conocer esta cifra no sólo nos permite calcular el diámetro de la Tierra: en el proceso de obtenerla también podéis arruinar por completo (o mejorar sustancialmente, quién sabe) un romántico anochecer en la playa.

¿De dónde viene la sal de los océanos?

Hace unos días, mientras agonizaba bajo el sol cubierto de salitre en una cala recóndita, me estuve preguntando por qué el mar es salado. Pero no me preguntaba por qué es salado en el sentido de por qué contiene sales: la incógnita que me corroía por dentro en ese momento era por qué contiene una cantidad tan desmesurada de un tipo de sal en concreto. El cloruro de sodio.

¿Cómo que de un tipo de sal en concreto? ¿Que es lo otro? ¿La sal iodada? ¿Es ese el otro tipo de sal que existe?

No, hombre, voz cursiva, hay muchas clases de sales. De hecho, una sal es cualquier sustancia compuesta por iones positivos y negativos que forman una estructura con carga eléctrica neutra. Algunos ejemplos de sales son el sulfato de potasio (K2SO4), el cloruro de calcio (CaCl2) o el carbonato de calcio (CaCO3). Aunque, para poner un ejemplo especialmente vistoso, ahí van unos cristales de sulfato de cobre (II) (CuSO4):

(Fuente)

O sea que, aunque el cloruro de sodio sea la sal más abundante en los océanos, en realidad está disuelto en el agua junto con otras sales como el sulfato de sodio (Na2SO4), el cloruro de potasio (KCl) y el bicarbonato de sodio (NaHCO2). En esta tabla podéis ver las sales más abundantes en el agua de mar y su concentración:

Pero, ojo, que todas estas sales no están flotando por el océano en forma de pequeños cristales. En realidad, lo que hay en el agua es un batiburrillo de iones diferentes que se unen para formar estas sales cuando el agua se evapora.

¿Lo cualo?

No te preocupes, voz cursiva, vamos a solucionar tu confusión hablando sobre las soluciones.

Alguna vez habréis puesto sal de mesa en un vaso medio vacío de agua y lo habréis removido para disolverla. Si es así, habréis notado que los cristales de sal se van difuminando poco a poco frente a vuestras narices mientras los removéis hasta que desaparecen de vuestra vista cuando se han disuelto por completo. Y es posible que os hayáis preguntado adónde ha ido a parar todo ese material sólido que había en el vaso hace un momento.

Pues resulta que, cuando una sal se disuelve, lo que ocurre en realidad es que los iones positivos y negativos que la componen se han separado. El agua es un compuesto polar, lo que significa que sus moléculas tienen un extremo con carga positiva (el de los dos átomos de hidrógeno) y otro con carga negativa (el de oxígeno), como si fueran pequeños imanes. Por tanto, si metes una sal en el agua, los polos positivos y negativos de las moléculas del líquido separan sus iones, ocupando el espacio entre ellos e impidiéndoles volver a unirse.

(Fuente)

Por supuesto, en este estado los iones no se pueden acercar para formar cristales que se puedan observar a simple vista. De ahí que estas sustancias “desaparezcan” cuando se disuelven.

O sea, que las sales que hay disueltas en el océano no están flotando por ahí en forma de cristales, sino separadas en sus componentes básicos, que sólo se unen entre sí para formar un sólido sólo cuando el agua que los mantiene divididos se evapora.

Como dato extra, también es posible que hayáis notado que la sal deja de disolverse en vuestro vaso de agua si echáis demasiada. Esto se debe a que, llegados a cierto punto, hay tantos iones mezclados entre las moléculas de agua que ya no queda espacio en el líquido para hacer hueco para los iones nuevos. Cuando esto ocurre se dice que la solución está saturada y, si se sigue introduciendo sal, sus iones se separan para formar parte de la solución al mismo ritmo que los que ya están disueltos se unen para formar cristales nuevos. Y es por eso que no se puede disolver más material en un líquido que ya esté saturado.

O sea que, en realidad, cuando se habla de la concentración de sales en una solución, es más correcto referirse a los iones que están disueltos. En ese caso, la tabla de la composición del agua del mar nos queda así:

Vale, pero entonces, ¿de dónde han salido todos esos iones que hay disueltos en el océano? No veo muchos iones a mi alrededor en mi día a día.

Y tienes razón, voz cursiva, como tienen carga eléctrica, los iones tienden a reaccionar con otros átomos para formar sustancias más complejas que no se pueden volver a separar a menos que alguna otra reacción química los saque de su lugar otra vez. Pero la atmósfera está llena de compuestos que acidifican ligeramente el agua que entra en contacto con ellas. El dióxido de carbono, por ejemplo, el mayor contribuyente en la erosión química de nuestro planeta, se disocia en el agua para formar ácido carbónico. Algunos óxidos de azufre y nitrógeno que están presentes en menor medida en la atmósfera también acidifican el agua al entrar en contacto con ella, dando lugar a ácido sulfúrico y ácido nítrico.

Cuando estos ácidos entran en contacto con las rocas, disuelven en ellos los iones de los minerales que las componen. Con el tiempo suficiente, estos iones disueltos en el agua llegan hasta el océano (por ejemplo, a través de un río) y se acumulan en él… Algo que lleva ocurriendo desde que se formaron los océanos, hace unos 4.400 millones de años.

Pero no me encaja nada de esta explicación. ¿De dónde salen tanto cloro y el sodio acumulados en el océano? Porque, vaya, no veo mucho cloro a mi alrededor en mi día a día, ¿EH?

Pues mira, voz cursiva, si echas un vistazo a esta lista podrás ver los elementos de la tabla periódica ordenados por su abundancia en las rocas de la corteza terrestre y verás que…

¿Ves? ¡El sodio es el sexto elemento más abundante y el cloro el vigésimoprimero! ¿No debería estar el mar lleno de otras cosas como silicio o hierro, mucho más abundantes?

… Sí, esa es precisamente la pregunta que estaba a punto de responder.

Es verdad que los elementos más abundantes de la corteza terrestre son el oxígeno, el silicio, el aluminio, el hierro o el calcio. Por eso no es de extrañar que los minerales más abundantes sean el cuarzo (compuesto por óxido de silicio), los distintos feldespatos (Al, Si, O, combinados con Na, Ca o K), piroxenos (con todo lo anterior y magnesio) y sales como el carbonato cálcico, formadas por seres vivos hace millones de años.

Antes de seguir, volvamos un momento al tema de la solubilidad para saber por qué nuestros océanos no están llenos de óxido de hierro.

La cantidad de una sal que se puede disolver en un líquido dependerá del las propiedades que tengan los iones que la componen. Las fuerzas que unen algunos iones son más débiles que las de otros, por lo que las moléculas de agua pueden separarlos (y disolverlos) más fácilmente. Por otro lado, a las moléculas de agua les cuesta más separar los iones que están unidos formando estructuras más grandes así que, en general, cuanto más débiles sean los enlaces y más pequeñas sean las “moléculas” de la sal, más fácil será disolverla y cabrá un cantidad mayor en un mismo volumen de agua.

Por otro lado, también hay compuestos químicos que no son sales y que ni siquiera son solubles en absoluto…Y eso es precisamente lo que le pasa a los elementos más abundantes que el sodio: las sales y compuestos más comunes que forman el hierro y el aluminio son poco solubles o insolubles, el silicio ni siquiera forma sales y las sales de calcio, como por ejemplo el carbonato de calcio, son muy poco solubles (todo esto lo podéis ver en esta otra lista o en esta tabla interactiva que me ha gustado mucho). Como resultado, cuando este tipo de compuestos llegan al mar no se disuelven en el agua, sino que se precipitan hacia el fondo en forma de sedimentos.

Por tanto, aunque el sodio “sólo” sea el sexto elemento más abundante de la corteza, es el único que se puede disolver en los océanos en grandes cantidades.

Vale, tiene sentido. ¿Y qué pasa con el cl...?

Claro, es que apenas hay minerales que contengan cloro en la corteza terrestre y esto parece contradecir la explicación. Pero, ojo, que aquí viene el quiebro.

Por supuesto, una parte del cloro que hay en los océanos viene de los minerales que componen las rocas. Aunque hay relativamente pocos minerales que contengan cloro, nuestro planeta es suficientemente grande y viejo como para que se hayan podido acumular cantidades significativas de este elemento en el mar por la erosión química del suelo. Pero si hay pocas rocas en la superficie que contengan cloro es porque en condiciones normales, el cloro es un gas. ¿Y de qué lugares suele salir mucho gas, voz cursiva?

De… Los… ¿Volcanes?

Eeequilicuá. Se cree que los volcanes han estado llenando los océanos de iones de cloro durante miles de millones de años, ya sea porque el cloro emitido por los volcanes de la superficie termina fijado en el agua de lluvia, que luego cae al mar, o porque es vertido directamente al mar desde los volcanes submarinos.

En esta tabla tenéis la composición de los gases emitidos (en porcentaje) en tres erupciones volcánicas distintas. Podéis ver que la emisión de los distintos gases, entre los que se encuentra el ácido clorhídrico, varía según la naturaleza de la emisión:

(Fuente)

Sí, todo tiene sentido, Pero también veo que las erupciones emiten muchos iones de sulfatos. ¿Por qué no hay más sulfatos en el mar?

No he podido encontrar una respuesta exacta pero, por un lado, los sulfatos no son tan solubles en el agua como el cloro y, por otro, parece ser que tienden a reaccionar con otros elementos (como el hierro) para terminar fijado en las rocas. Y esa es la razón por la que hay tantísimo cloruro de sodio disuelto en los océanos en vez de otro tipo de sales, vaya.

Total, que me ha parecido curioso que los iones de cloro y sodio que forman la sal de mesa lleguen hasta el océano a través de procesos distintos y sólo se unan cuando el agua que los mantiene disueltos se seca, formando los cristales con los que luego aliñamos nuestros platos.

[modo irónico on] Interesantísimo, sin duda. [modo irónico off]

¿Qué risa, eh, voz cursiva? ¿Sabes qué te va a parecer más interesante?

¡Afff! ¡No, por fav…!

En septiembre de 2015 publiqué un libro en el que hablo sobre la historia de la astronomía con la editorial Paidós y ahora está disponible en librerías tanto en España como en México y a través de internet por todo el mundo.

Así que, si os apetece saber cómo hemos llegado a conocer todo lo que sabemos hoy en día sobre el universo, podéis hacer click sobre la siguiente imagen del libro, “El universo en una taza de café“, para ir a la entrada donde hablo del libro con más detalle:

Identificando minerales de una mina abandonada

La mina de plomo y plata de s’Argentera (Ibiza) fue abandonada hace casi un siglo y siempre me ha parecido un lugar curioso, así que la última vez que fui me llevé la cámara para enseñar (por encima) un par de maneras de identificar los minerales que se puedan cruzar en vuestro camino.

A partir de ahora empezaré a subir vídeos sobre ciencia más a menudo (no necesariamente tan “improvisados” como este).

Respuestas (LXX): ¿Existe la antigravedad?

Ya he vuelto oficialmente a mi hogar de internet y hoy he querido hablar sobre otro tema que me sugirió un lector vía jordipereyra@cienciadesofa.com.

Resulta que alguien que supuestamente se llama Alan Harris estuvo leyendo información en internet sobre el desarrollo de una supuesta tecnología antigravitatoria y me quiso preguntar dos cosas: si la antigravedad es un fenómeno real y, de ser así, si estamos remotamente cerca de conseguir aprovechar su potencial.

Tengo malas noticias para ti, Alan Harris.

Antes de empezar a hablar sobre los avances en el campo de la antigravedad, aclaremos qué NO es la antigravedad: no es lo que permite a los astronautas “flotar” en el espacio (como comentaba en esta entrada) ni tiene nada que ver con el magnetismo que mantiene la peonza del siguiente vídeo suspendida en el aire:

En estos casos, los objetos involucrados no están experimentando ninguna “fuerza antigravitatoria. Los dos parecen inmunes al efecto de la gravedad a causa de fenómenos completamente distintos (la velocidad y el magnetismo) que contrarrestan la magnitud de la atracción gravitatoria que tira de ellos hacia abajo. Quería matizar este detalle porque hay empresas que utilizan el término “antigravedad” muy a la ligera con tal de hacer atractivos en sus productos.

¿Entonces no puedo referirme a mis torneados gemelos como “generadores de impulsos antigravitatorios de corta duración”?

Mientras no intentes vender tus piernas en eBay no te voy a poner ninguna pega, voz cursiva.

Pero, bueno, para entender el fenómeno de la antigravedad, hagamos primero un breve repaso sobre la naturaleza de la gravedad.

Como había comentado en otros artículos en los que hablaba sobre la teoría de la relatividad (por ejemplo, este sobre la película Interstellar), la gravedad no es una fuerza, aunque casi siempre nos referimos a ella como tal.
Seguir leyendo Respuestas (LXX): ¿Existe la antigravedad?

Divulgación científica para mentes distraídas.