Respuestas (LXXXV): ¿Existe una “temperatura más alta posible”?

Isma Garou me preguntaba hace unos días si, igual que existe una temperatura mínima posible, hay una temperatura más alta que nada pueda superar. Y resulta que el tema es bastante interesante, así que toca hoy toca hablar del calor.

Vale, pero espera un momento. Por una vez, ¿podrías responder “sí o no” y dar una cifra, sin irte por las ramas?

Podría, voz cursiva, podría… Pero entonces no aprenderíamos nada sobre el efecto que tienen las temperaturas extremas sobre la materia que nos rodea.

Pfff…

Como había comentado en esta otra entrada, la temperatura no es más que un reflejo de la velocidad a la que se mueven los átomos de una sustancia: cuanto más rápido vayan, más caliente nos parecerá que está. Este es el motivo por el que la temperatura más baja que puede alcanzar un objeto son -273,15ºC, el llamado cero absoluto, que tendría lugar cuando sus átomos están completamente quietos.

Y, como ya he comentado otras veces, la materia sufre diferentes cambios a medida que su temperatura aumenta.

Una sustancia permanecerá en estado sólido mientras sus átomos se muevan lo suficientemente despacio como para que sus enlaces los puedan mantener unidos. Pero, si la temperatura empieza a aumentar, llega un punto en el que los átomos vibran con tanta violencia que ya no son capaces de mantenerse enlazados. Es entonces cuando la estructura rígida que forman los átomos se desmoronará y la sustancia pasa de ser un sólido a un líquido.

Como dato adicional, la sustancia que tiene el punto de fusión más alto conocido es una “aleación” de hafnio, tántalo y carbono que no se funde hasta que alcanza 4.126ºC.

Polvo de carburo de tántalo (sin el carburo de hafnio). (Fuente)

Pero, como habréis imaginado, existen temperaturas más altas.
Seguir leyendo Respuestas (LXXXV): ¿Existe una “temperatura más alta posible”?

El mejor método (razonable) para enfriar una bebida rápidamente

Hoy os traigo un nuevo vídeo en el que pongo a prueba algunas sugerencias que me hicisteis la última vez que comprobé la efectividad de tres métodos distintos para enfriar una bebida (hielo, agua con hielo o agua salada con hielo). Y, no, por desgracia no he usado nitrógeno líquido.

¡De todos modos, espero que la cuestión quede zanjada! (y, si no, me lo podéis decir en los comentarios)

Respuestas (LXXXIV): ¿Realmente es posible que el universo sea un holograma?

Hace poco me di cuenta de que el buzón de entrada de mi correo electrónico (jordipereyra@cienciadesofa.com) ha acumulado muchas preguntas sobre la hipótesis del universo holográfico, un concepto que seguramente os habréis encontrado alguna vez en forma de noticias con titulares sensacionalistas que afirman que algún grupo de científicos ha demostrado que vivimos en un holograma.

A juzgar por los correos que me han llegado, parece que mucha gente ha interpretado que la comunidad científica se está preguntando seriamente si nuestro universo podría ser realmente un holograma en el sentido literal de la palabra: un modelo en tres dimensiones proyectado a partir de una superficie bidimensional (ya sea plana o curvada). Algo así, vaya:

Dramatización. (Fuente)

Pero, ¿hay algo de cierto en esta idea? ¿De verdad alguien ha demostrado que vivimos en un “universo holográfico”? ¿O el concepto de que la realidad es un holograma es una exageración más, alimentada por las ansias que tienen los medios digitales de ganar clicks fáciles?

Conociendo el historial de este blog, me huelo que la respuesta es que…

Shhhh, no adelantemos acontecimientos, voz cursiva. Para entender de qué va todo esto del universo holográfico, primero tendremos que hablar sobre información y agujeros negros.
Seguir leyendo Respuestas (LXXXIV): ¿Realmente es posible que el universo sea un holograma?

El “nivel del mar”: un concepto más complejo de lo que parece

NOTA: si habéis estado siguiendo a Ciencia de Sofá en Instagram (@cienciadesofa) o en Facebook durante estos días, sabréis que he estado de viaje en Islandia. Vi muchas cosas interesantes y terminé grabando bastantes vídeos, así que es probable que durante las próximas semanas cuelgue más de un vídeoblog del viaje en el canal de Youtube… Por si os queréis suscribir a él y tal (guiño, guiño).

Acabada la campaña chapucera de redes sociales, pongámonos manos a la obra con la entrada de hoy.

Imaginemos que estamos en la playa un día especialmente tranquilo. Más allá de las pequeñas olas que puedan romper la armonía de la superficie lisa del mar, en esos momentos nos da la impresión de que el agua del océano está perfectamente nivelada con el horizonte como si fuera un vaso de… Bueno, de agua. Pero esta aparente planitud de los océanos no es más que una ilusión porque, como todos sabemos, la Tierra es redonda y, a gran escala, la superficie de las grandes extensiones de agua está tan curvada como la de nuestro planeta.

Aun así, entre lo difícil que resulta apreciar la curvatura del horizonte y lo poco concreta que es la expresión “nivel del mar“, da la impresión de que, aunque esté curvada, la superficie del océano debería estar nivelada a lo largo y ancho del planeta. Dicho de otra manera: lo lógico sería que todos los puntos de la superficie del mar estén a la misma distancia del centro de la Tierra.

Pero resulta que no es así: la superficie del océano está llena de protuberancias y depresiones, igual que en tierra firme hay montañas y valles. Y no me refiero a las olas o las mareas, sino a masas inmensas de agua que se alzan por encima de otras a escala planetaria y que permanecen estables durante millones de años. Lo que quiero decir es esto, vaya:

Sí, claro, montañas de agua… Me parece que vas a necesitar algo más que un dibujo cutre para convencerme.
Seguir leyendo El “nivel del mar”: un concepto más complejo de lo que parece

¿A qué temperatura están los meteoritos cuando tocan el suelo?

Todos hemos visto alguna vez la típica escena en la que los protagonistas de una película o serie se acercan a investigar un objeto que ha caído del cielo y, al llegar al lugar del impacto, encuentran un meteorito clavado en el suelo y echando humo… O vapor… O cualquier otro efecto visual que nos da a entender que su superficie a está muy, muy caliente.

Pero, por muy extendida que esté la idea de que los meteoritos llegan a la superficie de la Tierra casi incandescentes, ese no suele ser el caso, así que…

Así que vas a hablar de meteoritos otra vez, ¿verdad?

Sí, voz cursivaotra vez.

En primer lugar, aclaremos la terminología: un trozo de roca y metal que flota por el espacio, un meteoroide, se convierte en un meteoro si se adentra en nuestra atmósfera y se desintegra antes de tocar el suelo… Que viene a ser lo que comúnmente llamamos una estrella fugaz, vaya. Sólo los meteoroides que sobreviven a su paso por la atmósfera y llegan hasta el suelo tienen el honor de llamarse meteoritos.

Os dejo también una animación que ilustra muy bien la diferencia.

Hay que tener en cuenta es que los meteoroides se mueven a hasta 72 kilómetros por segundo cuando entran en contacto con la atmósfera terrestre. A estas velocidades, el gas que tienen frente a ellos se comprime una barbaridad y, por tanto, su temperatura aumenta muchísimo. De hecho, el intenso calor producido durante esta fase hace que la superficie de los meteoroides se funda.

Ah, vale, ¿y me quieres decir que una bola de metal y roca no va a llegar al suelo calentita después de pasar por este proceso?

Pues no necesariamente, voz cursiva.
Seguir leyendo ¿A qué temperatura están los meteoritos cuando tocan el suelo?

¿Cuál es la manera más rápida de enfriar una bebida? (y por qué)

Ahora que tengo un material ligeramente mejor (básicamente, el micrófono de solapa que me habéis sugerido mil veces y  un ordenador que no se atasca cada 30 segundos cuando estoy editando), vuelven los vídeos de Ciencia de Sofá. Esta vez quería poner a prueba cuál es el método que funciona mejor para enfriar rápidamente una bebida: sumergirlo en hielo, en agua y hielo o en hielo con agua salada. Eso no quiere decir que no existan otros métodos potencialmente mejores que pueda poner a prueba en otro vídeo… Si queréis.

¡Espero que os sea útil!

No vas a pesar 1 kg menos durante el próximo eclipse solar (ni ningún otro)

Estos días me habéis estado preguntando por un rumor que afirma que todos pesaremos 1 kilo menos durante el próximo eclipse del 21 de agosto. Dejando a un lado la confusión entre peso y masa (que mencionaré más adelante), se supone que esto ocurrirá porque, como el sol y la Luna estarán alineados con la Tierra en la misma dirección durante el eclipse, sus tirones gravitatorios se combinarán para quitarnos ese kilo de encima.

Para un aficionado a la astronomía se ve a leguas que esto es un bulo, pero lo que me ha sorprendido más de esta “noticia” es que, aunque es el tipo de chorrada que repiten una y otra vez las páginas a las que no les importa mucho su reputación, si hacéis una búsqueda rápida en Google, encontraréis esta afirmación absurda en muchos medios de comunicación importantes Incluyendo algunos que supuestamente se dedican a hablar de ciencia.

Al ver la gravedad del asunto, me he puesto en modo divulgación de emergencia y vengo a explicar rápidamente por qué la idea de que todos vayamos a pesar 1 kg menos durante el próximo eclipse solar (o cualquier otro) no tiene ningún sentido.

Como sabréis, el eclipse solar del 21 de agosto se producirá porque la Luna se va a alinear con la Tierra y el sol. Y, por supuesto, es verdad que el tirón gravitatorio que experimentaremos en dirección al sol será mayor en ese momento que cuando la Luna no está en medio.

Nada está a escala en esta imagen (excepto Ronnie Coleman y la Tierra).

Pero, incluso antes de desenmascarar el bulo analizando los efectos de la gravedad combinada del sol y la Luna sobre nosotros, la primera pista que nos indica que la afirmación de hoy es falsa es que, desde el punto de vista físico, estas alineaciones no tienen nada de especial.
Seguir leyendo No vas a pesar 1 kg menos durante el próximo eclipse solar (ni ningún otro)

¿Vivimos en un multiverso?

Tanto si os gusta la ciencia-ficción como si no (pero especialmente si os gusta), habréis oído hablar mil veces sobre la idea de que vivimos en un multiverso compuesto por muchos universos más o menos parecidos al nuestro. De hecho, es posible que hayáis escuchado a alguien justificando esta “teoría” con un argumento parecido a este:

Cada vez que tiene lugar un evento que puede producir varios resultados diferentes, el universo se divide en tantas versiones distintas de sí mismo como posibles conclusiones existan. Si por ejemplo lanzas un dado, el universo se ramificará en seis versiones diferentes y, en cada una de ellas, existirá una copia de ti mismo que obtendrá un número distinto. Por tanto, aunque a ti te parezca que el asunto se acaba cuando tiras el dado y sacas un 3, existirían otras cinco realidades alternativas en las que cinco versiones paralelas de ti mismo habrían observado cada posible resultado… Pero nunca podrías ponerte en contacto con ellas, porque esos nuevos universos serían inaccesibles.

Por supuesto, en función del resultado que hubieras obtenido en cada uno, tu vida se desarrollaría de manera diferente en estos nuevos universos.

Aplicado esta lógica al universo entero, este planteamiento implicaría que la realidad se habría estado ramificando constantemente desde que tuvo lugar el Big Bang, creando nuevos universos cada vez que la interacción entre dos partículas tenía más de un resultado posible. Si esto fuera cierto, existiría una cantidad potencialmente infinita de universos paralelos que habrían evolucionado de manera diferente al nuestro durante casi 14.000 millones de años. Algunas de estas realidades alternativas serían parecidas a la nuestra, pero otras serían radicalmente distintas.

¿Eso significa que existirían otras versiones del universo en las que me ha tocado la lotería varias veces? ¿Y otras en la que he ganado un premio Nobel? 

Sí, claro, voz cursiva. Y otras tantas en las que la Tierra nunca se llegó a formar o algunas en las que la especie humana ha sido extinguida por un meteorito. Incluso existiría alguna realidad en la que tú llevas el blog y yo soy la voz cursiva.

Y seguro que Ciencia de Sofá tiene mucho más éxito en ese universo. En cualquier caso, ¿a qué esperamos para desarrollar alguna tecnología que nos permita visitar todas esas realidades paralelas potencialmente fantásticas? 
Seguir leyendo ¿Vivimos en un multiverso?

Respuestas (LXXXIII): ¿Cuál es la montaña más alta que jamás ha existido en la Tierra?

Hace poco estuve hablando sobre cómo la gravedad afecta a la altura de las montañas en otros cuerpos del sistema solar y hoy voy a tratar de responder a una de las preguntas que Antonio dejó en la sección de comentarios de ese artículo: ¿cuál es la montaña más alta que jamás ha existido en la Tierra?

Ante nada, aquí llega un dato que os podría sorprender: el monte Everest no es la montaña más alta del planeta.

Ya estamos… ¿Y entonces por qué es tan famoso, si tampoco es para tanto?

A ver, no le estoy intentando quitar mérito al Everest, voz cursiva. Lo que pasa es que la altura de una montaña individual está definida por la distancia que hay entre su base y su punto más alto así que, en este sentido, el monte Everest “sólo” mide 4.600 metros de altura en su cara norte y 3.600 metros en la cara sur.

Aun así, al encontrarse sobre la meseta del Himalaya, la base de la montaña parte desde unos 4.500 metros sobre el nivel del mar. Por tanto, sumando la altura que le proporcionan la meseta y la propia montaña, la cumbre del Everest es el punto de la superficie terrestre que tiene una mayor elevación por encima del nivel del mar (8.848 m).

Pero, de nuevo, el monte Everest en sí no es la montaña más alta del planeta. Ignorando la elevación desde la que parte la base, la montaña más alta que hay sobre la superficie de la Tierra es el monte McKinley, en EEUU, con 6.193 metros de altura.

Pero en nuestro planeta hay montañas incluso mayores… Aunque no impresionan tanto a primera vista porque parte de ellas está sumergida bajo el agua.
Seguir leyendo Respuestas (LXXXIII): ¿Cuál es la montaña más alta que jamás ha existido en la Tierra?

Divulgación científica para mentes distraídas.

A %d blogueros les gusta esto: